

LAB-AIDS CORRELATIONS FOR THE INDIANA 2009 CHEMISTRY STANDARDS

A Natural Approach to Chemistry (NAC) is written by Hsu, Chaniotakis, Carlisle, and Damelin, and is published by, and available exclusively from, LAB-AIDS, Ronkonkoma NY. This correlation is intended to show selected locations in NAC programs that support the Indiana 2009 Science Standards for chemistry. It is not an exhaustive list; other locations may exist that are not listed here. This document was prepared by Mark Koker, Ph D, Director of Curriculum and Training at LAB-AIDS.

For more information about this correlation or for questions about review copies, presentations, or any matters related to sales or service, please contact Denis Baker, LAB-AIDS Regional Manager at 614.298.1559 (cell phone: 614.886.0226) or by email at dbaker@lab-aids.com, or visit us on the web at www.lab-aids.com.

	NAC LOCATION	
STANDARD	STUDENT BOOK	LAB GUIDE
C1 Students begin to conceptualize the general structure of the atom and the roles played by the main parts of the atom in determining the properties of materials. They investigate, through such methods as laboratory work, the nature of chemical changes and the role of energy in those changes.		
C.1.1 Differentiate between pure substances and mixtures based on physical properties such as, density, melting point, boiling point, and solubility. (Core Standard)	2.1, p. 38 2.2, p. 47 2.3, p. 56-58 3.3, p. 90	2A, 2D
C.1.2 Determine the properties and quantities of matter such as mass, volume, temperature, density, melting point, boiling point, conductivity, solubility, color, numbers of moles, and pH (calculate pH from the hydrogen-ion concentration), and designate these properties as either extensive or intensive. (Core Standard)	1.1, pp. 8, 10-11 2.1, pp. 39, 45-46 3.1, pp. 72-75 3.3, p. 90 9.2, pp. 271-272 13.2, pp. 419-421	1B, 1C, 3A, 3B, 9A, 13A
C.1.3 Recognize indicators of chemical changes such as temperature change, the production of a gas, the production of a precipitate, or a color change. (Core Standard)	2.1, p. 40 4.2, p.114 10.3, pp. 308-309	4B, 10B
C.1.4 Describe solutions in terms of their degree of saturation. (Core Standard)	9.2, p. 273	9A, 9B
C.1.5 Describe solutions in appropriate concentration units (be able to calculate these units), such as molarity, percent by mass or volume, parts per million (ppm), or parts per billion (ppb). (Core Standard)	9.2, pp. 270-273	9A, 9B
C.1.6 Predict formulas of stable ionic compounds based on charge balance of stable ions. (Core Standard)	8.1, pp. 233-235	

	NAC LOCATION	
STANDARD	STUDENT BOOK	LAB GUIDE
C.1.7	8.1, pp. 235-236	8B
Use appropriate nomenclature when naming compounds. (Core Standard)		
C.1.8 Use formulas and laboratory investigations to classify substances as metal or nonmetal, ionic or molecular, acid or base, and organic or inorganic. (Core Standard)	6.1, pp.175, 177-179 8.1, pp. 233-235 13.1, pp. 410-411 17.1, pp. 536-538	6A, 6B, 8B, 3A
C.1.9 Describe chemical reactions with balanced chemical equations. (Core Standard)	10.1, pp. 299-301 10.2, pp. 302-304	10B
C.1.10 Recognize and classify reactions of various types such as oxidation- reduction. (Core Standard)	10.3, pp. 305-307 15.2, p. 478	10B
C.1.11 Predict products of simple reaction types including acid/base, electron transfer, and precipitation. (Core Standard)	10.3, pp. 307-309 13.3 pp.427-428 15.2, pp. 478-479	10B, 13B,
C.1.12 Demonstrate the principle of conservation of mass through laboratory investigations. (Core Standard)	4.2, p. 117 10.1, p. 298	11A, 11B
C.1.13 Use the principle of conservation of mass to make calculations related to chemical reactions. Calculate the masses of reactants and products in a chemical reaction from the mass of one of the reactants or products and the relevant atomic masses. (Core Standard)	4.2, pp. 116-117 11.1, pp. 328-11.1	11A, 11B
C.1.14 Use Avogadro's law to make mass-volume calculations for simple chemical reactions. (Core Standard)	11.1, pp. 328-11.12.2, pp. 53-55	11A, 11B
C.1.15 Given a chemical equation, calculate the mass, gas volume, and/or number of moles needed to produce a given gas volume, mass, and/or number of moles of product. (Core Standard)	14.3, pp. 462-465	11A, 11B
C.1.16 Calculate the percent composition by mass of a compound or mixture when given the formula. (Core Standard)	11.2, pp. 339-344	11B
C.1.17 Perform calculations that demonstrate an understanding of the relationship between molarity, volume, and number of moles of a solute in a solution. (Core Standard)	9.2, pp. 270-272	9B
C.1.18 Prepare a specified volume of a solution of given molarity. (Core Standard)	9.2, pp. 270-272	9B
C.1.19 Use titration data to calculate the concentration of an unknown solution. (Core Standard)	9.2, p. 274 13.4, p. 429	9B
C.1.20 Predict how a reaction rate will be quantitatively affected by changes of concentration.	12.1, p. 368 12.2, p. 387	12B

	NAC LOCATION	
STANDARD	STUDENT BOOK	LAB GUIDE
C.1.21 Predict how changes in temperature, surface area, and the use of catalysts will qualitatively affect the rate of a reaction.	12.1, p. 368	12A
C.1.22 Use oxidation states to recognize electron transfer reactions and identify the substance(s) losing and gaining electrons in an electron transfer reaction. (Core Standard)	15.2, pp. 478-482	15C
C.1.23 Write a rate law for a chemical reaction using experimental data.	12.1, pp. 371-372	12B
C.1.24 Recognize and describe nuclear changes.	20.2, pp. 637-641	
C.1.25 Recognize the importance of chemical processes in industrial and laboratory settings, e.g., electroplating, electrolysis, the operation of voltaic cells, and such important applications as the refining of aluminum.	8.4, pp. 254-255 10.4, pp. 318-319 15.4, pp. 493-505 20.5, pp. 658-659	10B, 12B, 15D
C.1.26 Describe physical changes and properties of matter through sketches and descriptions of the involved materials. (Core Standard)	2.1, p. 39 16.4, pp. 525-530	2D, 16A, 16B
C.1.27 Describe chemical changes and reactions using sketches and descriptions of the reactants and products. (Core Standard)	2.2, p. 40 10.3, pp. 305-310 10.4, pp. 311-312	2B, 10B
C.1.28 Explain that chemical bonds between atoms in molecules such as H2, CH4, NH3, H2CCH2, N2, Cl2, and many large biological molecules are covalent. (Core Standard)	7.1, p. 202 7.1, pp. 205-206 17.1, pp. 538-539 18.1, pp. 570-571	7A, 7B, 17B
C.1.29 Describe dynamic equilibrium. (Core Standard)	12.1, pp. 378-383	12B
C.1.30 Perform calculations that demonstrate an understanding of the gas laws. Apply the gas laws to relations between pressure, temperature, and volume of any amount of an ideal gas or any mixture of ideal gases. (Core Standard)	14.2, pp. 456-465	14A, 14B
C.1.31 Use kinetic molecular theory to explain changes in gas volumes, pressure, and temperature (Solve problems using pV=nRT). (Core Standard)	14.3, pp. 462-465	
C.1.32 Describe the possible subatomic particles within an atom or ion. (Core Standard)	5.1, pp. 134-140	5A
C.1.33 Use an element's location in the Periodic Table to determine its number of valence electrons, and predict what stable ion or ions an element is likely to form in reacting with other specified elements. (Core Standard)	6.2, pp. 177-182	6A, 6B, 6C
C.1.34 Use the Periodic Table to compare attractions that atoms have for their electrons and explain periodic properties, such as atomic size, based on these attractions. (Core Standard)	6.1, pp. 172-176	6C

	NAC LOCATION	
STANDARD	STUDENT BOOK	LAB GUIDE
C.1.35	2.3, p. 58	7A, 7B
Infer and explain physical properties of substances, such as melting	7.1, p. 201-203 (note:	,
points, boiling points, and solubility, based on the strength of molecular	physical property not	
attractions (Core Standard)	specifically linked to	
	type of bond)	
<u>C 1 36</u>	7 1 pp 198-203	7A 7B
Describe the pature of ionic covalent and hydrogen bonds and give	9.1 pp 263 264	/11, /10
avamples of how they contribute to the formation of various types of	9.1, pp. 203-204	
examples of now they contribute to the formation of various types of		
Compounds. (Core Standard)	5.2 146	TD TC
	5.2, p. 140	5B, 5C
Describe that spectral lines are the result of transitions of electrons	5.4, p. 159	
between energy levels and that these lines correspond to photons with a		
frequency related to the energy spacing between levels by using Planck's		
relationship (E=hv).		
C.1.38	3.1, pp. 73-74	3A, 3B, 3C
Distinguish between the concepts of temperature and heat. (Core	3.2, p. 79	
Standard)		
C.1.39	3.2, pp. 83-86	3B, 3C
Solve problems involving heat flow and temperature changes, using	3.3, pp. 88-91	
known values of specific heat and latent heat of phase change. (Core		
Standard)		
C.1.40	10.4, pp. 311-313	10B, 10C
Classify chemical reactions and/or phase changes as exothermic or		
endothermic. (Core Standard)		
C.1.41	10.4, pp. 311-313	10B
Describe the role of light, heat, and electrical energies in physical,	20.4, pp. 647-651	
chemical, and nuclear changes.		
C.1.42	20.4, pp. 652-655	
Describe that the energy release per gram of material is much larger in		
nuclear fusion or fission reactions than in chemical reactions. The change		
in mass (calculated by E=mc2) is small but significant in nuclear		
reactions.		
C.1.43	20.3, pp. 643-644	20A
Calculate the amount of radioactive substance remaining after an integral		
number of half-lives have passed. (Core Standard)		
C.1.44	17.1, pp. 538-543	17B
Convert between formulas and names of common organic compounds.	17.2, pp. 547-553	
(Core Standard)		
C.1.45	17.1, pp. 538-543	17B
Recognize common functional groups and polymers when given chemical	17.2, pp. 547-553	
formulas and names. (Core Standard)		
Historical Perspectives of Chemistry		
C.2		
Students gain understanding of how the scientific enterprise operates		
through examples of historical events. Through the study of these events,		
students understand that new ideas are limited by the context in which		
they are conceived, that these ideas are often rejected by the scientific		
establishment, that these ideas sometimes spring from unexpected		
findings, and that these ideas grow or transform slowly through the		
contributions of many different investigators.		

	NAC LOCATION	
STANDARD	STUDENT BOOK	LAB GUIDE
C.2.1 Explain that Antoine Lavoisier invented a whole new field of science based on a theory of materials, physical laws, and quantitative methods, with the conservation of matter at its core. Recognize that he persuaded a generation of scientists that his approach accounted for the experimental results better than other chemical systems.	Not covered	
C.2.2 Describe how Lavoisier's system for naming substances and describing their reactions contributed to the rapid growth of chemistry by enabling scientists everywhere to share their findings about chemical reactions with one another without ambiguity.	Not covered	
C.2.3 Explain that John Dalton's modernization of the ancient Greek ideas of element, atom, compound, and molecule strengthened the new chemistry by providing physical explanations for reactions that could be expressed in quantitative terms.	5.1, p. 135	
C.2.4 Explain how Frederich Wohler's synthesis of the simple organic compound urea from inorganic substances made it clear that living organisms carry out chemical processes. Describe how this discovery led to the development of the huge field of organic chemistry, and the industries based on it, and eventually to the field of biochemistry.	Not covered	
C.2.5 Explain how Arrhenius' discovery of the nature of ionic solutions contributed to the understanding of a broad class of chemical reactions. (Core Standard)	13.1, p. 412	
C.2.6 Explain that the appreciation of the laws of quantum mechanics to chemistry by Linus Pauling and others made possible an understanding of chemical reactions on the atomic level.	5.2, pp. 144-150	6C
C.2.7 Describe how the discovery of the structure of DNA by James D. Watson and Francis Crick made it possible to interpret the genetic code on the basis of a sequence of "letters."	18.4, pp. 594-497	