k. Based on the
iil?" in your Student ier, such as the
ent. Each time the complete your
e provided. Be as
nsfer energy from the pace provided.

SEPUP | © Copyright 2018 Regents of the University of California

Name	ate
Activity 2: Drive a Nail	
Guiding Question: How does the release height and mass of an object affect its gravitat energy?	ional potential
Key Words: gravitational potential energy, kinetic energy, potential energy	
Get Started: 1. Read the introduction scenario to Activity 2, "Drive a Nail" in your Student Book. Bareading, in what forms, or types, can energy occur?	ased on the
2. Read the complete introduction and Guiding Question to Activity 2, "Drive a Nail?" in Book. Note that <i>energy transfer</i> is the transfer of energy from one object to another, su transfer of kinetic energy of the moving hammer to the moving nail.	
Do the Activity: Part A: Effect of Release Height on Gravitational Potential Energy 1. Read Procedure Steps 1-8 in your Student Book.	
2. Watch the LABsent video (found here: LABsent Energy 2), to watch the experiment. Exvideo says to record, you may want to pause the video to give you ample time to compobservations.	
Procedure Step 1: Record the similarities and differences between them in the space prov specific as you can about each tube.	vided. Be as
Procedure Step 2: How can you use the plastic tubes and short steel cylinder to transfer cylinder to transfer cylinder to the nail into the foam block? Record your ideas in the space p	

Energy 2

	L	ı
	Ξ	τ
	C	-
	٤	į
	_	ĺ
		•
-		_
	6	f
	'	-
	@ CODY G C C C C C C C C C	-
	١	
	C	2
•	ζ	3
•	<	٤
		i
•	7	
•	÷	
	-	-
	_	
	r	•
	ċ	-
	•	
	7	
	C	J
	_	•
	,	١
	C	C
(Ċ	5
•	7	r
	٤	Ļ
	-	-
	7	•
	٠	•
	C	3
	=	=
	_	_
	Ė	3
	7	r
	١	Ľ
	r	-
	2	
	Ξ	_
	2	2
	ì	ř
	٤	Ļ
	r	ř
	~	"
	5	7
	1	•
	c	7
	2	=
		_
	C	
	Ć	ľ
	=	_
	Ξ	
	C	7

Procedure Step 5: How can you use what you observed as a measure of gravitational potential energy? Record your observations and ideas in the space provided.

Procedure Step 6: Repeat Step 4 until you have driven the nail into the foam. Record your data.

Procedure Step 7: Repeat Steps 3-6 with the short plastic tube instead of the long plastic tube. Record your data.

3. Look at the sample class data shown.

Sample Class Data

Group	Number	of drops
droup	Long plastic tube	Short plastic tube
1	4	8
2	5	8
3	4	8
4	4	9
5	3	7
6	4	8
7	4	8
8	4	8
Class mean	4	8

Do you see any patterns? What do you think is causing this pattern?	
	_
	_

Name	Date
4. A <i>pattern</i> is a set of repeating things or events. S lead to questions about relationships and ideas about crosscutting concept of <i>patterns</i> relate to this active	out what causes these relationships. How does the
2 1	

Part B: Effect of Mass on Gravitational Potential Energy

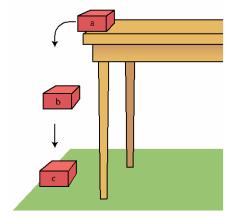
6. Design an experiment that will determine which cylinder transfers the *most* kinetic energy to the nail and which cylinder transfers the *least* kinetic energy to the nail.

When designing your experiment, think about these questions:

- What is the purpose of your experiment?
- What variable are you testing?
- What is your hypothesis?
- What variables will you keep the same?
- What is your control?
- How many trials will you conduct?
- Will you collect qualitative or quantitative data, or both?
- How will the data help you form a conclusion?
- How will you record the data?

7. Record your hypothesis and your planned experimental procedure in the space provided. Hypothesis:		
	-	
Procedure:	-	

Name	Date
	


Name _____ Date____

8. Make a data table that has space for all the data you need to record during the experiment. *Data:*

Name	Date
9. When you return to class, obtain your teacher's approval for your experiment, experiment, and record your results.	conduct your
Analysis: 1. Where were the cylinders located when they had the most a. gravitational potential energy? b. kinetic energy of motion?	
2. At which release height did the metal cylinders have the most gravitational pot Explain the evidence you gathered from Part A to make this conclusion.	tential energy?
3. When about to be released from the same height, which metal cylinder had the potential energy and which metal cylinder had the least gravitational potential enevidence you gathered from Part B to make this conclusion.	
4. Do you think that all the energy from the cylinder was transferred to the nail? I that showed it was or was not.	Describe any evidence

- 5. How do the following variables affect how much energy was transferred to the nail?
 - a. mass of the cylinder
 - b. height of the cylinder

6. In the situation shown below, how much gravitational potential energy and kinetic energy does the block have at each position?

a. When released from rest:

Potential energy = 100 J

Kinetic energy = _____

b. Halfway down:

Potential energy = _____

Kinetic energy = _____

c. Just before it hits:

Potential energy = 0 J

Kinetic energy = _____

Name	Date
Build Understanding : 1. What is the pattern regarding the effect of height from which the cylinder is dropped?	changing two variables – the mass of the cylinder and the
2 What are some evamples of real-world situ	nations where gravitational potential energy is
transformed to do work?	
3. What is the difference between gravitation	nal potential energy and potential energy?