Lab-Aids Correlations for Minnesota Academic Standards in Science Middle Level – Grades 6-8

Mark Koker, Ph D, Director of Curriculum & Professional Development, LAB-AIDS Lisa Kelp, Curriculum Specialist, LAB-AIDS

This document is intended to show how the SEPUP 3rd edition materials align with the *Minnesota Academic Standards in Science*.

ABOUT OUR PROGRAMS

Lab-Aids has maintained its home offices and operations in Ronkonkoma, NY, since 1963. We publish over 200 kits and core curriculum programs to support science teaching and learning, grades 6-12. All core curricula support an inquiry-driven pedagogy, with support for literacy skill development and with assessment programs that clearly show what students know and are able to do as a result of program use. All programs have extensive support for technology and feature comprehensive teacher support. For more information please visit <u>www.lab-aids.com</u> and navigate to the program of interest.

SEPUP

Materials from the Science Education for Public Understanding Program (SEPUP) are developed at the Lawrence Hall of Science, at the University of California, Berkeley, and distributed nationally by LAB- AIDS, Inc. Since 1987, development of SEPUP materials has been supported by grants from the National Science Foundation and other public and private sources. SEPUP programs include student books, equipment kits, teacher materials, and online digital content, and are available as full year courses, or separately, as units, each taking 3-8 weeks to complete, as listed below.

Earth Science	Life Science	Physical Science
Earth's Resources	Biomedical Engineering	Chemistry of Materials
Geological Processes	Body Systems	Chemical Reactions
Land, Water, and Human Interactions	Ecology	Energy
Solar System and Beyond	From Cells to Organisms	Force and Motion
Weather and Climate	Evolution	Fields and Interactions
	Reproduction	Waves

MIDDLE LEVEL, GRADES 6-8

Citations included in the correlation document are as follows:

Unit title: Activity Number

The Chemistry of Materials: 14

*Indicates where the Benchmark is assessed

ISSUES AND SCIENCE UNITS

Grade	Strand	Sub-strand	Standard	Content Area	Benchmark	Lab-Aids
6	1 Exploring	1.1 Asking	1.1.1 Students will	ESS: Earth's	6E.1.1.1.1 Ask questions that arise	Solar System and
	phenomena or	questions and	be able to ask	Place in the	from observations of patterns in the	Beyond: 2, 3, 4,
	engineering	defining	questions about	Universe	movement of night sky objects to	5, 11, 12
	problems	problems	aspects of the		test the limitations of a solar system	
			phenomena they		model. (P: 1, CC: 1, CI: ESS1)	
			observe, the		Emphasis is on students questioning	
			conclusions they		the limitations of their own models	
			draw from their		and questioning the kinds of revisions	
			models or scientific		needed to account for new data.	
			investigations, each		Examples of observations may	
			other's ideas, and		include the student's own	
			the information they		observations or observations made	
			read.		by others. Examples of night sky	
					objects include the Moon,	
					constellations, and planets.	
6	1 Exploring	1.1 Asking	1.1.1 Students will	ESS: Earth's	6E.1.1.1.2 Ask questions to examine	Evolution: 9, 12
	phenomena or	questions and	be able to ask	Systems and	an interpretation about the relative	
	engineering	defining	questions about	Processes	ages of different rock layers within a	Earth's
	problems	problems	aspects of the		sequence of several rock layers. (P: 1,	Resources: 8, 9,
			phenomena they		CC: 1, CI: ESS1) Emphasis is on the	11, 12
			observe, the		interpretation of rock layers using	
			conclusions they		geologic principles like superposition	
			draw from their		and cross-cutting relationships.	
			models or scientific			
			investigations, each			
			other's ideas, and			
			the information they			
			read.			

Grade	Strand	Sub-strand	Standard	Content Area	Benchmark	Lab-Aids
6	1 Exploring	1.1 Asking	1.1.1 Students will	ESS: Human	6E.1.1.1.3 Ask questions to clarify	Weather and
	phenomena or	questions and	be able to ask	Impacts and	evidence of the factors that have	Climate: 1, 14,
	engineering	defining	questions about	Sustainability	caused the rise in global	15, 16*
	problems	problems	aspects of the	in Earth's	temperatures over the past century.	
			phenomena they	Systems	(P: 1, CC: 7, CI: ESS3) Emphasis is on	
			observe, the		the major role that human activities	
			conclusions they		play in causing the rise in global	
			draw from their		temperatures. Examples of factors	
			models or scientific		include human activities (such as	
			investigations, each		fossil fuel combustion, cement	
			other's ideas, and		production, and agricultural activity)	
			the information they		and natural processes (such as	
			read.		changes in incoming solar radiation	
					or volcanic activity). Examples of	
					evidence can include tables, graphs,	
					and maps of global and regional	
					temperatures, atmospheric levels of	
					gases such as carbon dioxide and	
					methane, and the rates of human	
					activities.	
6	1 Exploring	1.2 Planning and	1.2.1 Students will	ESS: Weather	6E.1.2.1.1 Collect data and use digital	Weather and
	phenomena or	carrying out	be able to design	and Climate	data analysis tools to identify	Climate:11, 12,
	engineering	investigations	and conduct		patterns to provide evidence for how	13*
	problems		investigations in the		the motions and complex	
			classroom,		interactions of air masses result in	
			laboratory, and/or		changes in weather conditions.** (P:	
			field to test		3, CC: 2, CI: ESS2) Emphasis is on how	
			students' ideas and		weather at a fixed location changes	
			questions, and will		in response to moving air masses and	
			organize and collect		to interactions at frontal boundaries	
			data to provide		between air masses. Examples of	
			evidence to support		weather data may include	
			claims the students		temperature, air pressure,	
			make about		precipitation, and wind. Examples of	
			phenomena.		data analysis may include weather	
					maps, diagrams, and visualizations or	
					may be obtained through laboratory	

Grade	Strand	Sub-strand	Standard	Content Area	Benchmark	Lab-Aids
					experiments (such as with	
					condensation).	
6	2 Looking at	2.1 Analyzing	2.1.1 Students will	ESS: Earth's	6E.2.1.1.1 Analyze and interpret data	Solar System and
	data and	and interpreting	be able	Place in the	to determine similarities and	Beyond: 10, 12,
	empirical	data	to represent	Universe	differences among features and	13*
	evidence to		observations and		processes occurring on solar system	
	understand		data in order to		objects. (P: 4, CC: 3, CI:	
	phenomena or		recognize patterns		ESS1) Examples of objects may	
	solve problems		in the data, the		include moons, planets, comets or	
			meaning of those		asteroids. Example features may	
			patterns, and		include characteristics of an object's	
			possible		atmosphere, surface or interior.	
			relationships		Examples of processes may include	
			between variables.		erosion, deposition, cratering, or	
					volcanism.	
6	2 Looking at	2.1 Analyzing	2.1.1 Students will	ESS: Earth's	6E.2.1.1.2 Analyze and interpret data	Geological
	data and	and interpreting	be able	Systems and	on the distribution of fossils, rocks,	Processes: 10, 11,
	empirical	data	to represent	Processes	continental shapes, and seafloor	12, 13, 14*
	evidence to		observations and		structures to provide evidence of	
	understand		data in order to		past plate motions. (P: 4, CC: 1, CI:	
	phenomena or		recognize patterns		ESS2) Examples of data may include	
	solve problems		in the data, the		similarities of rock and fossil types on	
			meaning of those		different continents, the shapes of	
			patterns, and		the continents (including the	
			possible		continental shelves), and the	
			relationships		locations of ocean floor features such	
			between variables.		as ridges and trenches.	
6	2 Looking at	2.1 Analyzing	2.1.1 Students will	ESS: Human	6E.2.1.1.3 Analyze and interpret data	Geological
	data and	and interpreting	be able to represent	Impacts and	on natural hazards to forecast future	Processes: 1, 3, 4,
	empirical	data	observations and	Sustainability	catastrophic events and inform the	6, 7, 8, 11, 18*
	evidence to		data in order to	in Earth's	development of technologies to	
	understand		recognize patterns	Systems	mitigate their effects.* (P: 4, CC: 1,	
	phenomena or		in the data, the		CI: ESS3, ETS1) Examples of natural	
	solve problems		meaning of those		hazards may be taken from interior	
			patterns, and		processes (such as earthquakes and	
			possible		volcanic eruptions), surface processes	
1					(such as mass wasting and tsunamis),	

Grade	Strand	Sub-strand	Standard	Content Area	Benchmark	Lab-Aids
			relationships between variables.		or severe weather events. Examples of data may include the locations, magnitudes, and frequencies of the natural hazards. Examples of technologies may include building tornado shelters or barriers to protect	
6	3 Developing possible explanations of phenomena or designing solutions to engineering problems	3.1 Developing and using models	3.1.1 Students will be able to develop, revise, and use models to represent the students' understanding of phenomena or systems as they develop questions, predictions and/or explanations, and communicate ideas to others.	ESS: Earth's Place in the Universe	from flooding.6E.3.1.1.1 Develop and use scalemodels of solar system objects todescribe the sizes of objects, thelocation of objects, and the motion ofthe objects; and include the role thatgravity and inertia play in controllingthat motion. (P: 2, CC: 3, CI: ESS1)Emphasis is on the regularity of themotion and accounting for Earth-based visual observations of themotion of these objects in our sky.Emphasis is also on recognizing thelimitations of any of the models.Examples may include physicalmodels (such as the analogy ofdistance along a football field orcomputer visualizations of orbits) orconceptual models (such asmathematical proportions relative tothe size of familiar objects such asstudents' school or state). Notincluded are Kepler's Laws andretrograde motion of planets.	Solar System and Beyond: 10, 11, 12, 14, 15, 16*

Grade	Strand	Sub-strand	Standard	Content Area	Benchmark	Lab-Aids
6	3 Developing possible explanations of phenomena or designing solutions to engineering problems	3.1 Developing and using models	3.1.1 Students will be able to develop, revise, and use models to represent the students' understanding of phenomena or systems as they develop questions, predictions and/or explanations, and communicate ideas to others.	Earth's Systems and Processes	6E.3.1.1.2 Develop a model, based on observational evidence, to describe the cycling and movement of Earth's rock material and the energy that drives these processes. (P: 2, CC: 5, CI: ESS2) Emphasis of the practice is on using observations of processes like weathering and erosion of soil and rock, deposition of sediment, and crystallization of lava to inform model development. Emphasis of the core idea is on how these processes operate over geologic time to form rocks and minerals through the cycling of Earth's materials. Examples of models may be conceptual or physical.	Geological Processes: 2, 5, 8, 9, 10, 11, 13, 14, 15*
6	3 Developing possible explanations of phenomena or designing solutions to engineering problems	3.1 Developing and using models	3.1.1 Students will be able to develop, revise, and use models to represent the students' understanding of phenomena or systems as they develop questions, predictions and/or explanations, and communicate ideas to others.	ESS: Earth's Systems and Processes	6E.3.1.1.3 Develop a model, based on observational and experimental evidence, to describe the cycling of water through Earth's systems driven by energy from the sun and the force of gravity. (P: 2, CC: 5, CI: ESS2) Emphasis of the practice is on developing a way to represent the mechanisms of water changing state, the global movements of water and energy, and on how the observational and experimental evidence supports the model. Examples of models may be conceptual or physical.	Land, Water, and Human Interactions: 2, 5, 7, 8, 9*

Grade	Strand	Sub-strand	Standard	Content Area	Benchmark	Lab-Aids
6	3 Developing possible explanations of phenomena or designing solutions to engineering problems	3.2 Constructing explanations and designing solutions	3.2.1 Students will be able to apply scientific principles and empirical evidence (primary or secondary) to explain the causes of phenomena or identify weaknesses in explanations developed by the students or others.	ESS: Earth's Systems and Processes	6E.3.2.1.1 Construct a scientific explanation based on evidence from rock strata for how the geologic time scale is used to organize Earth's 4.6- billion-year-old history. (P: 6, CC: 3, CI: ESS1) Emphasis is on how analyses of rock formations and the fossils they contain are used to establish relative ages of major events in Earth's history. Examples of major events may include the evolution or extinction of particular organisms, the formation of mountain chains and the formation of ocean basins. Not included is using radioactive decay to age date rocks.	Earth's Resources: 9, 10, 11, 12*
6	3 Developing possible explanations of phenomena or designing solutions to engineering problems	3.2 Constructing explanations and designing solutions	3.2.1 Students will be able to apply scientific principles and empirical evidence (primary or secondary) to explain the causes of phenomena or identify weaknesses in explanations developed by the students or others.	ESS: Earth's Systems and Processes	6E.3.2.1.2 Construct a scientific explanation based on evidence for how the uneven distribution of Earth's mineral, energy, or groundwater resources is the result of past geological processes. (P: 6, CC: 2, CI: ESS3) Emphasis is on how these resources are limited and typically non-renewable on a human timeframe. Examples of uneven distribution of resources may include petroleum (like in the North Dakota Bakken Shale), metal ores (like iron in the rocks of Minnesota's Iron Range), or groundwater in the different regions of Minnesota.	Geological Processes: 2, 16, 17*
6	3 Developing possible explanations of phenomena or designing	3.2 Constructing explanations and designing solutions	3.2.1 Students will be able to apply scientific principles and empirical evidence (primary or	ESS: Earth's Systems and Processes	6E.3.2.1.3 Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment.* (P: 6, CC: 2, CI: ESS3, ETS1) <i>Emphasis of the</i>	Land, Water, and Human Interactions: 2, 3, 4, 5, 6, 9, 13, 14, 15, 16*

Grade	Strand	Sub-strand	Standard	Content Area	Benchmark	Lab-Aids
	solutions to		secondary) to		practice is on applying scientific	
	engineering		explain the causes		principles about Earth's natural	
	problems		of phenomena or		processes (like how water moves	
			identify weaknesses		through the ground and air) to	
			in explanations		designing solutions to problems	
			developed by the		caused by human activity. Emphasis	
			students or others.		of the core idea is on how human	
					activity impacts Earth's	
					environments. Examples of parts of	
					the design process may include	
					assessing the kinds of solutions that	
					are feasible, and designing and	
					evaluating solutions that may reduce	
					those impacts. Examples of human	
					activities that impact the	
					environment may include	
					withdrawing too much water from	
					aquifers, altering stream flow by	
					building dams or levees, increasing	
					runoff caused by impermeable	
					surfaces like parking lots, or adding	
					undesirable materials to the air,	
					water or land.	
6	4	4.1 Engaging in	4.1.1 Students will	ESS: Earth's	6E.4.1.1.1 Construct an argument,	Geological
	Communicatin	Argument from	be able to engage in	Systems and	supported by evidence, for how	Processes: 2, 3, 4,
	g reasons,	Evidence	argument from	Processes	geoscience processes have changed	6, 7, 9, 10, 11, 12,
	arguments and		evidence for the		Earth's surface at varying time and	13*
	ideas to others		explanations the		spatial scales. (P: 7, CC: 3, CI: ESS2)	
			students construct,		Emphasis is on how processes like	
			defend and revise		erosion, deposition, mountain	
			their interpretations		building, and volcanism affect the	
			when presented		surface of Earth. Some processes, like	
			with new evidence,		mountain building take a long time.	
			critically evaluate		Other processes, like landslides,	
			the scientific		happen quickly. Examples may	
1			arguments of		include how weathering, erosion and	

Grade	Strand	Sub-strand	Standard	Content Area	Benchmark	Lab-Aids
			others, and present		glacial activity have shaped the	
			counter arguments.		surface of Minnesota.	
6	4	4.2 Obtaining,	4.2.2 Students will	ESS: Earth's	6E.4.2.2.1 Communicate how a	Solar System and
	Communicatin	evaluating and	be able to gather	Place in the	series of models, including those	Beyond: 2, 3, 4, 5,
	g reasons,	communicating	information about	Universe	used by Minnesota American Indian	6, 7, 9*
	arguments and	information	and communicate		Tribes and communities and other	
	ideas to others		the methods that		cultures, are used to explain how	This standard is
			are used by various		motion in the Earth-Sun-Moon	partially covered.
			cultures, especially		system causes the cyclic patterns of	A Western
			those of Minnesota		lunar phases, eclipses and seasons.	explanation is
			American Indian		(P: 8, CC: 1, CI: ESS1) Examples of	provided, but not
			Tribes and		cultures may include those within the	a Native one.
			communities, to		local context of the learning	
			develop		community and within the context of	
			explanations of		Minnesota. Emphasis is on students	
			phenomena and		questioning the limitations of their	
			design solutions to		models and revising them to account	
			problems.		for new observations. Models may be	
					physical, graphical or conceptual.	
7	1 Exploring	1.1 Asking	1.1.1 Students will	LS: Heredity:	7L.1.1.1 Ask questions about the	Reproduction: 1
	phenomena or	questions and	be able to ask	inneritance	processes and outcomes of various	From Collecto
	engineering	defining	questions about	and Variation	methods of communication between	From Cells to
	problems	problems	aspects of the	of Iraits	cells of multicellular organisms. (P: 1,	Organisms: 1, 10,
			phenomena they		CC: 6, CI: LSI) Examples of questions	15
			observe, the		about processes and outcomes may	
			conclusions they		include questions about disruptions	
			araw from their		in the human body, such as in cancer	
			investigations each		diabatas paralysis or other	
			other's ideas and		dicordors	
			the information they		uisorders.	
			road			
7	1 Exploring	1 1 Acking	1 1 1 Studoots will	IS: Haradity:	71 1 1 1 2 Ask questions that arise	Evolution: 2 5 6
	T LAPIOLING	T.T Making	he able to ask	inheritance	from careful observations of	7 16
	engineering	defining	auestions about	and Variation	nhenomena or models to clarify and	,, 10
	nrohlems	nrohlems	aspects of the	of Traits	or seek additional information about	Reproduction: 1
	Providina	PIODICIIIS	phenomena they		how changes in genes can affect	8. 12. 13

Grade	Strand	Sub-strand	Standard	Content Area	Benchmark	Lab-Aids
			observe, the		organisms. (P: 1, CC: 6, CI: LS3)	
			conclusions they		Examples of changes may include	
			draw from their		neutral, harmful, or beneficial effects	
			models or scientific		to the structure and function of the	
			investigations, each		organism.	
			other's ideas, and			
			the information they			
			read.			
7	1 Exploring	1.2 Planning and	1.2.1 Students will	LS: From	7L.1.2.1.1 Conduct an investigation	From Cells to
	phenomena or	carrying out	be able to design	Molecules to	to provide evidence that living things	Organisms: 1, 2,
	engineering	investigations	and conduct	Organisms:	are made of cells; either one cell or	3, 4, 5, 6, 7, 8, 9*
	problems		investigations in the	Structures	many different numbers and types of	
			classroom,	and Processes	cells. (P: 3, CC: 3, CI: LS1) Emphasis is	
			laboratory, and/or		on developing evidence that living	
			field to test		things are made of cells,	
			students' ideas and		distinguishing between living and	
			questions, and will		non-living things, and understanding	
			organize and collect		that living things may be made of one	
			data to provide		cell or of many and varied cells.	
			evidence to support			
			claims the students			
			make about			
			phenomena.			

Grade	Strand	Sub-strand	Standard	Content Area	Benchmark	Lab-Aids
7	2 Looking at	2.1 Analyzing	2.1.1 Students will	LS:	7L.2.1.1.1 Analyze and interpret data	Ecology: 1, 2, 5,
	data and	and interpreting	be able to represent	Ecosystems:	to provide evidence for the effects of	6, 7, 8, 9*
	empirical	data	observations and	Interactions,	resource availability on organisms	
	evidence to		data in order to	Energy, and	and populations of organisms in an	
	understand		recognize patterns	Dynamics	ecosystem.** (P: 4, CC: 2, CI: LS2)	
	phenomena or		in the data, the		Emphasis is on cause and effect	
	solve problems		meaning of those		relationships between resources and	
			patterns, and		growth of individual organisms and	
			possible		the number or organisms in	
			relationships		ecosystems during periods of	
			between variables.		abundant and scarce resources.	
					Examples may include populations of	
					MN deer, moose, wolf, scavengers or	
					aquatic populations in Lake Superior	
					or algal blooms in lakes and ponds.	
					Examples of evidence may include the	
					use of flow charts to organize and	
					sequence the algorithm, and to show	
					relationships.	
7	2 Looking at	2.1 Analyzing	2.1.1 Students will	LS: Evolution:	7L.2.1.1.2 Analyze and interpret data	Evolution: 7, 8, 9,
	data and	and interpreting	be able to represent	Unity and	for patterns in the fossil record that	10 11*
	empirical	data	observations and	Diversity	document the existence, diversity,	
	evidence to		data in order to		extinction, and change of life forms	
	understand		recognize patterns		throughout the history of life on	
	phenomena or		in the data, the		Earth. (P: 4, CC: 1, CI: LS4) Emphasis	
	solve problems		meaning of those		is on finding patterns of changes in	
			patterns, and		the level of complexity of anatomical	
			possible		structures in organisms and the	
			relationships		chronological order of fossil	
			between variables.		appearance in the rock layers.	
7	2 Looking at	2.1 Analyzing	2.1.1 Students will	LS: Evolution:	7L.2.1.1.3 Analyze visual data to	Evolution: 12,
	data and	and interpreting	be able to represent	Unity and	compare patterns of similarities in	13*
	empirical	data	observations and	Diversity	the embryological development	
	evidence to		data in order to		across multiple species to identify	
	understand		recognize patterns		relationships not evident in the fully	
	phenomena or		in the data, the		formed anatomy.** (P: 4, CC: 1, CI:	
	solve problems		meaning of those		LS4) Emphasis is on inferring general	

Grade	Strand	Sub-strand	Standard	Content Area	Benchmark	Lab-Aids
			patterns, and		patterns of relatedness among	
			possible		embryos of different organisms by	
			relationships		comparing their macroscopic	
			between variables.		appearances on diagrams or pictures.	
7	2 Looking at	2.2 Using	2.2.1 Students will	LS: Evolution:	7L.2.2.1.1 Use an algorithm to	Evolution: 1, 2, 3,
	data and	mathematics	be able to use	Unity and	explain how natural selection may	4, 5, 6*
	empirical	and	mathematics to	Diversity	lead to increases and decreases of	
	evidence to	computational	represent physical		specific traits in populations.** (P: 5,	This correlation
	understand	thinking	variables and their		CC: 2, CI: LS4) Emphasis is on using	works towards
	phenomena or		relationships;		proportional reasoning to develop	using an
	solve problems		compare		mathematical models, probability	algorithm, but
			mathematical		statements, or simulations to support	does not do it
			expressions to the		explanations of trends in changes to	directly.
			real world; and		populations over time.	
			engage in			
			computational			
			thinking as they use			
			or develop			
			algorithms to			
			describe the natural			
			or designed worlds.			
7	3 Developing	3.1 Developing	3.1.1 Students will	LS: From	7L.3.1.1.1 Develop and use a model	From Cells to
	possible	and using	be able to develop,	Molecules to	to describe the function of a cell as a	Organisms: 4, 6,
	explanations of	models	revise, and use	Organisms:	whole and describe the way cell parts	7, 8*
	phenomena or		models to represent	Structures	contribute to the cell's function. (P:	
	designing		their understanding	and Processes	2, CC: 6, CI: LS1) Emphasis is on the	
	solutions to		of phenomena or		cell functioning as a whole system	
	engineering		systems as they		and the primary role of identified	
	problems		develop questions,		parts of the cell, specifically the	
			predictions and/or		nucleus, chloroplasts, mitochondria,	
			explanations and		cell membrane, and cell wall.	
			communicate ideas			
			to others.			
7	3 Developing	3.1 Developing	3.1.1 Students will	LS: From	7L.3.1.1.2 Develop and use a model	From Cells to
	possible	and using	be able to develop,	Molecules to	to describe how food is rearranged	Organisms: 5,
	explanations of	models	revise, and use	Organisms:	through chemical reactions forming	11* Body
	phenomena or		models to represent		new molecules that support growth	

Grade	Strand	Sub-strand	Standard	Content Area	Benchmark	Lab-Aids
	designing solutions to engineering problems		their understanding of phenomena or systems as they develop questions, predictions and/or explanations and communicate ideas to others.	Structures and Processes	and/or release energy as this matter moves through an organism. (P: 2, CC: 5, CI: LS1) Emphasis is on describing that molecules are broken apart and put back together and that in this process, energy is released. Examples may include models of sugar breakdown into molecules of glucose that power our bodies, or protein breakdown into amino acids that are later reassembled to create body structures.	Systems: 5
7	3 Developing possible explanations of phenomena or designing solutions to engineering problems	3.1 Developing and using models	3.1.1 Students will be able to develop, revise, and use models to represent their understanding of phenomena or systems as they develop questions, predictions and/or explanations and communicate ideas to others.	LS: Ecosystems: Interactions, Energy, and Dynamics	7L.3.1.1.3 Develop and use a model to describe the cycling of matter and flow of energy among living and nonliving parts of an ecosystem. (P: 2, CC: 5, CI: LS2) <i>Emphasis is on</i> <i>describing the conservation of matter</i> <i>and flow of energy into and out of</i> <i>various ecosystems.</i>	Ecology: 7, 8, 11, 12*
7	3 Developing possible explanations of phenomena or designing solutions to engineering problems	3.1 Developing and using models	3.1.1 Students will be able to develop, revise, and use models to represent their understanding of phenomena or systems as they develop questions, predictions and/or explanations and communicate ideas to others.	LS: Heredity: inheritance and Variation of Traits	7L.3.1.1.4 Develop and use a model to describe why asexual reproduction results in offspring with identical genetic information and sexual reproduction results in offspring with genetic variation. (P: 2, CC: 2, CI: LS3) <i>Emphasis is on using models, such as</i> <i>Punnett squares, diagrams, and</i> <i>simulations to describe the cause and</i> <i>effect relationship of gene</i> <i>transmission from parent(s) to</i> <i>offspring and resulting genetic</i> <i>variations.</i>	<i>Reproduction</i> : 1, 2, 3, 4, 5, 6, 7, 8, 9*

Grade	Strand	Sub-strand	Standard	Content Area	Benchmark	Lab-Aids
7	3 Developing	3.2 Constructing	3.2.1 Students will	LS: From	7L.3.2.1.1 Construct an explanation	Reproduction:
	possible	explanations	be able to apply	Molecules to	based on evidence for how	1, 7*
	explanations of	and designing	scientific principles	Organisms:	environmental and genetic factors	
	phenomena or	solutions	and empirical	Structures	influence the growth of organisms	
	designing		evidence (primary or	and Processes	and/or populations. (P: 6, CC: 2, CI:	
	solutions to		secondary) to		LS1, ETS2) Examples of	
	engineering		construct causal		environmental factors may include	
	problems		explanations of		local environmental conditions such	
			phenomena or		as availability of food, light, space,	
			identify weaknesses		and water. Examples of genetic	
			in explanations		factors may include large breed cattle	
			developed by		and species of grass affecting growth	
			themselves or		of organisms. Examples of evidence	
			others.		may include drought decreasing plant	
					growth, fertilizer increasing plant	
					growth, different varieties of plant	
					seeds growing at different rates in	
					different conditions, and fish growing	
					larger in large ponds than they do in	
					small ponds. Examples of human	
					activity may include agricultural	
					practices, phosphorus and nitrogen	
					loading in lakes, hybridization and	
					breeding practices.	
7	3 Developing	3.2 Constructing	3.2.1 Students will	LS: From	7L.3.2.1.2 Construct an explanation	From Cells to
	possible	explanations	be able to apply	Molecules to	based on evidence for the role of	Organisms: 12,
	explanations of	and designing	scientific principles	Organisms:	photosynthesis in the cycling of	13*
	phenomena or	solutions	and empirical	Structures	matter and flow of energy into and	
	designing		evidence (primary or	and Processes	out of organisms. (P: 6, CC: 2, CI: LS1)	
	solutions to		secondary) to		Emphasis of the core idea is on plants	
	engineering		construct causal		and algae using energy from light to	
	problems		explanations of		make sugars (food for themselves	
			phenomena or		and as an energy source for other	
			identify weaknesses		organisms) from carbon dioxide (from	
			in explanations		air) and water; and in the process	
1			developed by		release oxygen.	

Grade	Strand	Sub-strand	Standard	Content Area	Benchmark	Lab-Aids
			themselves or			
			others.			
7	3 Developing	3.2 Constructing	3.2.1 Students will	LS: Evolution:	7L.3.2.1.3 Apply scientific ideas to	Evolution: 7, 8, 9,
	possible	explanations	be able to apply	Unity and	construct an explanation for the	10 11, 12*
	explanations of	and designing	scientific principles	Diversity	anatomical similarities and	
	phenomena or	solutions	and empirical		differences among modern	
	designing		evidence (primary or		organisms and between modern and	
	solutions to		secondary) to		fossil organisms to infer evolutionary	
	engineering		construct causal		relationships. (P: 6, CC: 1, CI: LS4)	
	problems		explanations of		Emphasis is on explanations of the	
			phenomena or		evolutionary relationships among	
			identify weaknesses		organisms in terms of similarity of	
			in explanations		differences of the gross appearance	
			developed by		of anatomical structures.	
			themselves or			
_			others.			
/	3 Developing	3.2 Constructing	3.2.1 Students will	LS: Evolution:	/L.3.2.1.4 Construct an explanation	Evolution: 1, 2, 3,
	possible	explanations	be able to apply	Unity and	based on evidence that describes	4*
	explanations of	and designing	scientific principles	Diversity	now genetic variations of traits in a	
	phenomena or	solutions	and empirical		population increase some individuals	
	designing		evidence (primary or		probability of surviving and	
	onginooring		secondary) to		onvironment (P: 6 (C: 2 CI: 154)	
	problems		ovplanations of		Emphasic is on using simple	
	problems		nhenomena or		probability statements and	
			identify weaknesses		proportional reasoning to construct	
			in explanations		explanations	
			developed by		capitaliations.	
			themselves or			
			others.			
7	4	4.1 Arguing	4.1.1 Students will	LS: From	7L.4.1.1.1 Support or refute an	From Cells to
	Communicatin	from evidence	be able to engage in	Molecules to	explanation by arguing from	Organisms: 10,
	g reasons,		argument from	Organisms:	evidence for how the body is a	14, 15
	arguments and		evidence for the	Structures	system of interacting subsystems	
	ideas to others		explanations the	and Processes	composed of groups of cells. (P: 7,	
			students construct,		CC: 4, CI: LS1) Emphasis is on the	
			defend and revise		conceptual understanding that cells	

Grade	Strand	Sub-strand	Standard	Content Area	Benchmark	Lab-Aids
			their interpretations when presented with new evidence, critically evaluate the scientific arguments of others, and present counter arguments.		form tissues and tissues form organs specialized for particular body functions. Examples may include arguments that deal with the interaction of subsystems within a system and the normal functioning of those systems.	
7	4 Communicatin g reasons, arguments and ideas to others	4.1 Arguing from evidence	4.1.1 Students will be able to engage in argument from evidence for the explanations they construct, defend and revise their interpretations when presented with new evidence, critically evaluate the scientific arguments of others, and present counter arguments.	LS: From Molecules to Organisms: Structures and Processes	7L.4.1.1.2 Support or refute an explanation by arguing from evidence and scientific reasoning for how animal behavior and plant structures affect the probability of successful reproduction. (P: 7, CC: 2, CI: LS1) Examples of behaviors that affect the probability of animal reproduction may include nest building to protect young, herding of animals to protect young from predators, and vocalization and/or colorful plumage to attract mates for breeding. Examples of animal behaviors that affect the probability of plant reproduction may include transferring pollen or seeds, and creating conditions for seed germination and growth. Examples of plant structures may include bright flowers attracting butterflies that transfer pollen, flower nectar and odors that attract insects that transfer pollen, and hard shells on nuts that squirrels bury.	Reproduction: 10*, 11*
7	4 Communicatin g reasons,	4.1 Arguing from evidence	4.1.2 Students will be able to argue from evidence to justify the best	LS: Ecosystems: Interactions,	7L.4.1.2.1 Construct an argument supported by empirical evidence that changes in physical or biological components of an ecosystem affect	<i>Ecology</i> : 1, 2, 3, 4, 5, 6, 12, 13, 14*

Grade	Strand	Sub-strand	Standard	Content Area	Benchmark	Lab-Aids
	arguments and ideas to others		solution to a problem or to compare and evaluate competing designs, ideas, or methods.*	Energy, and Dynamics	populations.* (P: 7, CC: 7, CI: LS2) Emphasis is on recognizing patterns in data and making warranted inferences about changes in populations, and on evaluating empirical evidence supporting arguments about changes and/or impacts to ecosystems. Examples of physical components may include human-built structures like urban developments, or dams.	
7	4 Communicatin g reasons, arguments and ideas to others	4.1 Arguing from evidence	4.1.2 Students will be able to argue from evidence to justify the best solution to a problem or to compare and evaluate competing designs, ideas, or methods.*	LS: Ecosystems: Interactions, Energy, and Dynamics	7L.4.1.2.2 Evaluate competing design solutions for maintaining biodiversity or ecosystem services.* (P: 7, CC: 2, CI: LS2, ETS2) Emphasis is on evaluating a solution that reduces environmental harm while still benefiting humans. Examples of ecosystem services (natural processes within ecosystems that humans also benefit from) may include water purification as it cycles through Earth's systems, nutrient recycling, climate stabilization, decomposition of wastes, and pollination. Examples of design solution constraints may include scientific, economic, and social considerations.	<i>Ecology</i> : 2, 3, 4, 5, 13, 14, 15*
7	4 Communicatin g reasons, arguments and ideas to others	4.2 Obtaining, evaluating and communicating information	4.2.2 Students will be able to gather information about and communicate the methods that are used by various cultures, especially those of Minnesota American Indian	LS: Ecosystems: Interactions, Energy, and Dynamics	7L.4.2.2.1 Gather multiple sources of information and communicate how Minnesota American Indian Tribes and communities and other cultures use knowledge to predict or interpret patterns of interactions among organisms across multiple ecosystems. (P: 8, CC: 1, CI: LS2, ETS2) Examples of cultures may	Ecology: 2, 6, 7, 8, 10* This standard is partially covered. A Western explanation is provided, but not a Native one.

Grade	Strand	Sub-strand	Standard	Content Area	Benchmark	Lab-Aids
			Tribes and communities, to develop explanations of phenomena and design solutions to problems.		include those within the local context of the learning community and within the context of Minnesota. Emphasis is on predicting consistent patterns of interactions in different ecosystems in terms of the relationships among and between organisms and abiotic components of ecosystems. Examples of types of interactions may include competition, predation and mutualisms.	
8	1 Exploring phenomena or engineering problems	1.1 Asking questions and defining problems	1.1.1 Students will be able to ask questions about aspects of the phenomena they observe, the conclusions they draw from their models or scientific investigations, each other's ideas, and the information they read.	PS: Matter and its Interactions	8P.1.1.1.1 Ask questions about locations of common elements on the periodic table to note patterns in the properties of similarly grouped elements. (P: 1, CC: 1, CI: PS1) Emphasis is on the similar properties within columns of the periodic table. Examples of questions that students may think to ask may include how are the properties of elements in a column similar and different.	<i>Chemistry of Materials</i> : 2, 2 extension
8	1 Exploring phenomena or engineering problems	1.1 Asking questions and defining problems	1.1.1 Students will be able to ask questions about aspects of the phenomena they observe, the conclusions they draw from their models or scientific investigations, each other's ideas, and the information they read.	PS: Motion and Stability: Forces and Interactions	8P.1.1.1.2 Ask questions about data to determine the factors that affect the strength of electric and magnetic forces. (P: 1, CC: 2, CI: PS2) <i>Examples</i> of data may include the number of turns of wire in a coil, the strength of magnets, and the current through the wire and their effect on the speed of rotation in a simple motor.	Fields and Interactions: 7, 8, 9, 12, 13*

Grade	Strand	Sub-strand	Standard	Content Area	Benchmark	Lab-Aids
8	1 Exploring	1.2 Planning and	1.2.1 Students will	PS: Matter	8P.1.2.1.1 Plan and conduct an	Chemistry of
	phenomena or	carrying out	be able to design	and its	investigation of changes in pure	Materials: 8, 9,
	engineering	investigations	and conduct	Interactions	substances when thermal energy is	10*
	problems		investigations in the		added or removed and relate those	
			classroom,		changes to particle motion. (P: 3, CC:	
			laboratory, and/or		2, CI: PS1) Emphasis is on qualitative	
			field to test		molecular-level models of solids,	
			students' ideas and		liquids, and gases to show that	
			questions, and will		adding or removing thermal energy	
			organize and collect		increases or decreases kinetic energy	
			data to provide		of the particles until a change of state	
			evidence to support		occurs.	
			claims the students			
			make about			
			phenomena.			
8	1 Exploring	1.2 Planning and	1.2.1 Students will	PS: Motion	8P.1.2.1.2 Plan and conduct an	Force and
	phenomena or	carrying out	be able to design	and Stability:	investigation to provide evidence	Motion: 1, 6, 7, 8,
	engineering	investigations	and conduct	Forces and	that the change in an object's motion	9, 13*
	problems		investigations in the	Interactions	depends on the sum of the forces on	
			classroom,		the object and the mass of the	
			laboratory, and/or		object. (P: 3, CC: 7, CI: PS2) Emphasis	
			field to test		is on balanced (Newton's First Law)	
			students' ideas and		and unbalanced forces in a system,	
			questions, and will		qualitative comparisons of forces,	
			organize and collect		mass and changes in motion	
			data to provide		(Newton's Second Law), frame of	
			evidence to support		reference, and specification of units.	
			claims the students			
			make about			
1			phenomena.			

Grade	Strand	Sub-strand	Standard	Content Area	Benchmark	Lab-Aids
8	1 Exploring	1.2 Planning and	1.2.1 Students will	PS: Motion	8P.1.2.1.3 Conduct an investigation	Fields and
	phenomena or	carrying out	be able to design	and Stability:	and evaluate the experimental design	Interactions: 5, 7,
	engineering	investigations	and conduct	Forces and	to provide evidence that fields exist	9, 10, 12*
	problems		investigations in the	Interactions	between objects exerting forces on	
			classroom,		each other even though the objects	
			laboratory, and/or		are not in contact. (P: 3, CC: 2, CI:	
			field to test		PS2) Examples of this phenomenon	
			students' ideas and		may include the interactions of	
			questions, and will		magnets, electrically-charged strips	
			organize and collect		of tape, and electrically-charged pith	
			data to provide		balls. Examples of investigations may	
			evidence to support		include first-hand experiences or	
			claims the students		simulations.	
			make about			
			phenomena.			
8	1 Exploring	1.2 Planning and	1.2.1 Students will	PS: Energy	8P.1.2.1.4 Plan and conduct an	Energy: 1, 4, 6, 7,
	phenomena or	carrying out	be able to design		investigation to determine how the	8*
	engineering	investigations	and conduct		temperature of a substance is	
	problems		investigations in the		affected by the transfer of energy,	
			classroom,		the amount of mass, and the type of	
			laboratory, and/or		matter. (P: 3, CC: 2, CI: PS 3)	
			field to test		Emphasis is on conceptualizing	
			students' ideas and		temperature as the average kinetic	
			questions, and will		energy of a substance's particles.	
			organize and collect		Examples of investigations may	
			data to provide		include comparing final water	
			evidence to support		temperatures after different masses	
			claims the students		of ice melt in equal volumes of water	
			make about		with the same initial temperature,	
			phenomena.		and temperature changes of different	
					materials with the same mass as they	
					heat or cool in the environment.	

Grade	Strand	Sub-strand	Standard	Content Area	Benchmark	Lab-Aids
8	2 Looking at	2.1 Analyzing	2.1.1 Students will	PS: Matter	8P.2.1.1.1 Analyze and interpret data	Chemical
	data and	and interpreting	be able	and its	on the properties of substances	Reactions: 1, 2, 3,
	empirical	data	to represent	Interactions	before and after the substances	4, 5*
	evidence to		observations and		interact to determine if a chemical	
	understand		data in order to		reaction has occurred. (P: 4, CC: 1, CI:	
	phenomena or		recognize patterns		PS1) Examples of reactions may	
	solve problems		in the data, the		include burning sugar or steel wool,	
			meaning of those		fat reacting with sodium hydroxide,	
			patterns, and		and mixing zinc with hydrogen	
			possible		chloride. Examples of properties may	
			relationships		include density, melting point, boiling	
			between variables.		point, solubility, flammability, and	
					odor.	
8	2 Looking at	2.1 Analyzing	2.1.1 Students will	PS: Energy	8P.2.1.1.2 Construct and interpret	Force and
	data and	and interpreting	be able		graphical displays of data to describe	Motion: 1, 2, 3, 4,
	empirical	data	to represent		the relationship of kinetic energy to	5*
	evidence to		observations and		the mass and speed of an object. (P:	
	understand		data in order to		4, CC: 3, CI: PS3) Emphasis is on	
	phenomena or		recognize patterns		descriptive relationships between	
	solve problems		in the data, the		kinetic energy and mass separately	
			meaning of those		from kinetic energy and speed.	
			patterns, and		Examples may include riding a bicycle	
			possible		at different speeds, rolling different	
			relationships		sizes of rocks downhill, and getting	
			between variables.		hit by a Wiffle ball versus a tennis	
					ball.	
8	2 Looking at	2.2 Using	2.2.1 Students will	PS: Waves	8P.2.2.1.1 Use mathematical	Waves: 1, 2, 3, 4,
	data and	mathematics	be able to use	and their	representations to describe a simple	7*
	empirical	and	mathematics to	Applications	model for waves that includes how	
	evidence to	computational	represent physical		the amplitude of a wave is related to	
	understand	thinking	variables and their		the energy in a wave. (P: 5, CC: 1, CI:	
	phenomena or		relationships;		PS4) Emphasis is on describing waves	
	solve problems		compare		(standard repeating waves) with both	
			mathematical		qualitative and quantitative thinking.	
			expressions to the		Not included is electromagnetic	
			real world; and		waves.	
			engage in			

Grade	Strand	Sub-strand	Standard	Content Area	Benchmark	Lab-Aids
			computational thinking as they use or develop algorithms to describe the natural or designed worlds.			
8	2 Looking at data and empirical evidence to understand phenomena or solve problems	2.2 Using mathematics and computational thinking	2.2.1 Students will be able to use mathematics to represent physical variables and their relationships; compare mathematical expressions to the real world; and engage in computational thinking as they use or develop algorithms to describe the natural or designed worlds.	PS: Energy	8P.2.2.1.2 Create a computer program to illustrate the transfer of energy within a system where energy changes form.** (P: 5, CC: 7, CI: PS3) Emphasis of the programming skills is the use of sequences, events and conditionals. Examples of a system may include a roller coaster, a pendulum, an electric water heater, and a solar electric collector.	Energy: 13 This correlation is working towards creating a computer program, but the activity does not make the students develop one.
8	3 Developing possible explanations of phenomena or designing solutions to engineering problems	3.1 Developing and using models	3.1.1 Students will be able to develop, revise, and use models to represent their understanding of phenomena or systems as they develop questions, predictions and/or explanations and communicate ideas to others.	PS: Matter and its Interactions	8P.3.1.1.1 Develop models to describe the atomic composition of simple molecules and crystals. (P: 2, CC: 3, CI: PS1) Emphasis is on developing models of molecules that vary in complexity. Examples of simple molecules may include ammonia and methane. Examples of crystal structures may include sodium chloride or quartz, pyrite or diamonds. Does not include valence electrons and bonding energy, discussing the ionic nature of	Chemistry of Materials: 2, 6, 7, 11, 12*

Grade	Strand	Sub-strand	Standard	Content Area	Benchmark	Lab-Aids
					subunits of complex structures, or a	
					complete description of all individual	
					atoms in a complex molecule or	
					crystal structure.	
8	3 Developing	3.1 Developing	3.1.1 Students will	PS: Matter	8P.3.1.1.2 Develop and use a model	Chemical
	possible	and using	be able to develop,	and its	to describe how the total number of	Reactions: 1, 2, 3,
	explanations of	models	revise, and use	Interactions	atoms does not change in a chemical	4, 5, 6, 7*
	phenomena or		models to represent		reaction and thus mass is conserved.	
	designing		their understanding		(P: 2, CC: 5, CI: PS1) Emphasis is on	
	solutions to		of phenomena or		the law of conservation of matter.	
	engineering		systems as they		Examples of models may include	
	problems		develop questions,		physical models, digital formats, or	
			predictions and/or		drawings, which represent atoms.	
			explanations and		Not included are atomic masses,	
			communicate ideas		balancing symbolic equations, or	
			to others.		intermolecular forces.	
8	3 Developing	3.1 Developing	3.1.1 Students will	PS: Energy	8P.3.1.1.3 Develop and revise a	Fields and
	possible	and using	be able to develop,		model to describe that when the	Interactions: 3, 4,
	explanations of	models	revise, and use		arrangement of objects interacting at	6, 7, 10, 11*
	phenomena or		models to represent		a distance changes, different	
	designing		their understanding		amounts of potential energy are	
	solutions to		of phenomena or		stored in the system. (P: 2, CC: 5, CI:	
	engineering		systems as they		PS3) Emphasis is on relative amounts	
	problems		develop questions,		potential energy and not on	
			predictions and/or		calculations of potential energy.	
			explanations and		Examples of objects within systems	
			communicate ideas		interacting at varying distances may	
			to others.		include: the Earth and either a roller	
					coaster cart at varying positions on a	
					hill or objects at varying heights on	
					shelves, changing the	
					airection/orientation of a magnet,	
					and a balloon with static electrical	
					charge being brought closer to a	
					classmate's hair. Examples of models	
					may include representations,	

Grade	Strand	Sub-strand	Standard	Content Area	Benchmark	Lab-Aids
					diagrams, pictures, and written descriptions of systems.	
8	3 Developing possible explanations of phenomena or designing solutions to engineering problems	3.1 Developing and using models	3.1.1 Students will be able to develop, revise, and use models to represent their understanding of phenomena or systems as they develop questions, predictions and/or explanations and communicate ideas to others.	PS: Waves and their Applications	8P.3.1.1.4 Develop and use a model to qualitatively describe that waves are reflected, absorbed, or transmitted through various materials. (P: 2, CC: 4, CI: PS4) <i>Emphasis is on both light and</i> <i>mechanical waves. Examples of</i> <i>models may include drawings,</i> <i>simulations, a storyboard/diagram</i> <i>and written descriptions.</i>	Waves: 3, 8, 9, 10, 11, 12, 13*
8	3 Developing possible explanations of phenomena or designing solutions to engineering problems	3.2 Constructing explanations and designing solutions	3.2.1 Students will be able to apply scientific principles and empirical evidence (primary or secondary) to explain the causes of phenomena or identify weaknesses in explanations developed by the students or others.	PS: Matter and its Interactions	8P.3.2.1.1 Construct an explanation based on evidence and scientific principles of a common phenomenon that can be explained by the motions of molecules. (P: 6, CC: 3, CI: PS1) Emphasis of the core idea is that the movement of small particles (atoms or molecules) can explain the behavior of macroscopic phenomena. Examples of phenomena may include expansion of balloons, diffusion of odors, and pressure changes in gases due to heating and cooling.	Chemistry of Materials: 9 (AI #1)
8	3 Developing possible explanations of phenomena or designing solutions to engineering problems	3.2 Constructing explanations and designing solutions	3.2.2 Students will be able to use their understanding of scientific principles and the engineering design process to design solutions that meet established criteria and constraints.*	PS: Matter and its Interactions	8P.3.2.2.1 Construct, test and modify a device that either releases or absorbs thermal energy by chemical processes.* (P: 6, CC: 5, CI: PS1, ETS1) Emphasis is on the design, controlling the transfer of energy to the environment, and modification of a device using factors such as type and concentration of a substance. Examples of chemical reactions	Chemical Reactions: 2, 3, 5, 8, 9, 10, 11*

Grade	Strand	Sub-strand	Standard	Content Area	Benchmark	Lab-Aids
					include dissolving ammonium	
					chloride or calcium chloride in water.	
8	3 Developing	3.2 Constructing	3.2.2 Students will	PS: Motion	8P.3.2.2.2 Design a solution to a	Force and
	possible	explanations	be able to use their	and Stability:	problem involving the motion of two	Motion: 1, 10, 11,
	explanations of	and designing	understanding of	Forces and	colliding objects using Newton's 3rd	12*
	phenomena or	solutions	scientific principles	Interactions	Law.* (P: 6, CC: 4, CI: PS2,	
	designing		and the engineering		ETS1) Examples of practical	
	solutions to		design process to		problems may include the impact of	
	engineering		design solutions that		one dimensional collisions between	
	problems		meet established		two cars, between a car and	
			criteria and		stationary objects, and between a	
			constraints.*		meteor and a space vehicle.	
8	3 Developing	3.2 Constructing	3.2.2 Students will	PS: Energy	8P.3.2.2.3 Design, construct, and test	Energy: 1, 7, 8, 9,
	possible	explanations	be able to use their		a device that either minimizes or	10, 11, 12, 13*
	explanations of	and designing	understanding of		maximizes thermal energy transfer.*	
	phenomena or	solutions	scientific principles		(P: 6, CC: 5, CI: PS3, ETS1) Emphasis is	
	designing		and the engineering		on using scientific principles to design	
	solutions to		design process to		the device. Examples of devices may	
	engineering		design solutions that		include an insulated box, a solar	
	problems		meet established		cooker, and a foam cup.	
			criteria and			
			constraints.*			
8	4	4.1 Arguing	4.1.1 Students will	PS: Motion	8P.4.1.1.1 Construct and present	Fields and
	Communicatin	from evidence	be able to engage in	and Stability:	arguments using evidence to support	Interactions: 3, 4,
	g reasons,		argument from	Forces and	the claim that gravitational	7*
	arguments and		evidence for the	Interactions	interactions are attractive and	
	ideas to others		explanations the		depend on the masses of interacting	
			students construct,		objects. (P: 7, CC: 3, CI: PS2)	
			defend and revise		Examples of evidence for arguments	
			their interpretations		may include data generated from	
			when presented		simulations or digital tools; and	
			with new evidence,		charts displaying mass, strength of	
			critically evaluate		interaction, distance from the Sun,	
			the scientific		and orbital periods of objects within	
			arguments of		the solar system. Not included are	

Grade	Strand	Sub-strand	Standard	Content Area	Benchmark	Lab-Aids
			others, and present		Newton's Law of Gravitation or	
			counter arguments.		Kepler's Laws.	
8	4	4.1 Arguing	4.1.1 Students will	PS: Motion	8P.4.1.1.2 Compare and evaluate	Energy: 2, 3, 4, 5,
	Communicatin	from evidence	be able to engage in	and Stability:	evidence to support the claim that	6*
	g reasons,		argument from	Forces and	when the kinetic energy of an object	
	arguments and		evidence for the	Interactions	changes, energy is transferred to or	
	ideas to others		explanations the		from the object. (P: 7, CC: 5, CI:	
			students construct,		PS3) Examples of empirical evidence	
			defend and revise		used in the students' arguments may	
			their interpretations		include the temperature or motion of	
			when presented		an object before and after an energy	
			with new evidence,		transfer.	
			critically evaluate			
			the scientific			
			arguments of			
			others, and present			
			counter arguments.			
8	4	4.2 Obtaining,	4.2.1 Students will	PS: Matter	8P.4.2.1.1 Gather and evaluate	Chemistry of
	Communicatin	evaluating and	be able to read and	and its	information from multiple sources to	Materials: 1, 2, 3,
	g reasons,	communicating	interpret multiple	Interactions	describe that synthetic materials	4, 5, 11, 12, 13*
	arguments and	information	sources to obtain		come from natural resources and	
	ideas to others		information,		impact society. (P: 8, CC: 6, CI: PS1)	
			evaluate the merit		Emphasis of the practice is to	
			and validity of		synthesize information from multiple	
			claims and design		appropriate sources and assess the	
			solutions, and		credibility, accuracy and possible bias	
			communicate		of each publication. Emphasis is on	
			information, ideas,		natural resources that undergo a	
			and evidence in a		cnemical process to form the	
			variety of formats.		synthetic material. Examples of new	
					materiais may include plastic,	
					meaicines, foods, and alternative	
1					fuels.	

Grade	Strand	Sub-strand	Standard	Content Area	Benchmark	Lab-Aids
8	4 Communicatin g reasons, arguments and ideas to others	4.2 Obtaining, evaluating and communicating information	4.2.1 Students will be able to read and interpret multiple sources to obtain information, evaluate the merit and validity of claims and design solutions, and communicate information, ideas, and evidence in a variety of formats.	PS: Waves and their Applications	8P.4.2.1.2 Integrate qualitative scientific and technical information to support the claim that digitized signals are a more reliable way to encode and transmit information than analog signals.** (P: 8, CC: 6, CI: PS4) Emphasis of the practice is on using information to support and clarify claims. Emphasis of the core idea is on understanding that waves (encoded both analog and digitally) can be used for communication purposes. Examples of encoding and transmitting information may include using fiber optic cable to transmit light pulses, radio wave pulses in wifi devices, and conversion of stored binary patterns to make sound or text on a computer screen.	<i>Waves</i> : 5, 6