

LAB-AIDS CORRELATIONS FOR

MASSACHUSETTS SCIENCE AND TECHNOLOGY/ENGINEERING LEARNING STANDARDS

GRADES 6-8

Mark Koker, Ph D, Director of Curriculum & Professional Development, Lab-Aids
Din Seaver, Curriculum Developer/Product Manager, Lab-Aids

This document shows how SEPUP middle school materials align with the *Massachusetts Science and Technology/Engineering Learning Standards*¹.

ABOUT OUR PROGRAMS

Lab-Aids has maintained its home offices and operations in Ronkonkoma, NY, since 1963. We publish over 200 kits and core curriculum programs to support science teaching and learning, grades 6-12. All core curricula support an inquiry-driven pedagogy, with support for literacy skill development and with robust support for assessment. All programs have extensive support for technology and feature comprehensive teacher support. For more information please visit www.lab-aids.com and navigate to the program of interest.

SEPUP

Materials from the Science Education for Public Understanding Program (SEPUP) are developed at the Lawrence Hall of Science, at the University of California, Berkeley, and distributed nationally by LAB- AIDS, Inc. Since 1987, development of SEPUP materials has been supported by grants from the National Science Foundation and other public and private sources. SEPUP programs include student books, equipment kits, teacher materials, and online digital content, and are available as full year courses, or separately, as units, each taking 3-8 weeks to complete, as listed below.

Note: In Grade 6 the last two citations are 2nd Edition units. Students need to complete only three activities in these two units to address two of the Massachusetts Learning Standards.

Grade 6	Grade 7	Grade 8
Body Systems, 3e	Land, Water, & Human Interactions, 3e	Force and Motion, 3e
Cells to Organisms, 3e	Geological Processes, 3e	Chemistry of Materials, 3e
Evolution, 3e	Ecology, 3e	Chemical Reactions, 3e
Biomedical Engineering, 3e	Energy, 3e	Reproduction, 3e
Earth's Resources, 3e	Fields and Interactions, 3e	Weather and Climate, 3e
Waves, 3e		Solar System & Beyond, 3e
The Chemistry of Materials, 2e		
Studying Materials Scientifically, 2e		

¹ http://www.doe.mass.edu/frameworks/scitech/2016-04.pdf

ABOUT THE LAB-AIDS CITATIONS

The following tables are presented in a Disciplinary Core Idea arrangement – Earth Space Science (ESS), Life Science (LS), Physical Science (PS) and Engineering, Technology and Applications of Science (ETS).

Citations included in the correlation document are as follows:

* indicates where the NGSS Performance Expectation is assessed

Unit title: The Chemistry of Materials:

Activity Number 14

SIXTH GRADE

Discipline	Core Idea	Standard Code	Standard Text	SEPUP Unit & Activity #
Earth and Space Sciences	Earth's Place in the Universe	6.ESS.1.1	Develop and use a model of the Earth-Sun-Moon system to explain the causes of lunar phases and eclipses of the Sun and Moon. Clarification Statement: Examples of models can be physical, graphical, or conceptual and should emphasize relative positions and distances.	Solar System and Beyond: 2, 3, 4, 5*
Earth and Space Sciences	Earth's Place in the Universe	6.ESS.1.4	Analyze and interpret rock layers and index fossils to determine the relative ages of rock formations that result from processes occurring over long periods of time. Clarification Statements: Analysis includes laws of superposition and crosscutting relationships limited to minor displacement faults that offset layers. Processes that occur over long periods of time include changes in rock types through weathering, erosion, heat, and pressure. State Assessment Boundary: Strata sequences that have been reordered or overturned, names of specific periods or epochs and events within them, or the identification and naming of minerals or rock types are not expected in state assessment.	Earth's Resources: 9, 10, 11, 12*
Earth and Space Sciences	Earth's Place in the Universe	6.ESS.1.5	Use graphical displays to illustrate that Earth and its solar system are one of many in the Milky Way galaxy, which is one of billions of galaxies in the universe. Clarification Statement: Graphical displays can include maps, charts, graphs, and data tables.	not addressed
Earth and Space Sciences	Earth's Systems	6.ESS.2.3	Analyze and interpret maps showing the distribution of fossils and rocks, continental shapes, and seafloor structures to provide	Geological Processes: 10, 11, 12, 13, 14*

Discipline	Core Idea	Standard Code	Standard Text	SEPUP Unit & Activity #
			evidence that Earth's plates have moved great distances, collided, and spread apart. Clarification Statement: Maps may show similarities of rock and fossil types on different continents, the shapes of the continents (including continental shelves), and the locations of ocean structures (such as ridges, fracture zones, and trenches), similar to Wegener's visuals. State Assessment Boundary: Mechanisms for plate motion or paleomagnetic anomalies in oceanic and continental crust are not expected in state assessment.	
Life Science	From Molecules to Organisms: Structures and Processes	6.LS.1.1	Provide evidence that all organisms (unicellular and multicellular) are made of cells. Clarification Statement: Evidence can be drawn from multiple types of organisms, such as plants, animals, and bacteria.	From Cells to Organisms: 1, 2, 3, 4, 9*
Life Science	From Molecules to Organisms: Structures and Processes	6.LS.1.2	Develop and use a model to describe how parts of cells contribute to the cellular functions of obtaining food, water, and other nutrients from its environment, disposing of wastes, and providing energy for cellular processes. Clarification Statement: Parts of plant and animal cells include (a) the nucleus, which contains a cell's genetic material and regulates its activities; (b) chloroplasts, which produce necessary food (sugar) and oxygen through photosynthesis (in plants); (c) mitochondria, which release energy from food through cellular respiration; (d) vacuoles, which store materials, including water, nutrients, and waste; (e) the cell membrane, which is a selective barrier that	From Cells to Organisms: 6, 7, 8

Discipline	Core Idea	Standard Code	Standard Text	SEPUP Unit & Activity #
			enables nutrients to enter the cell and wastes to be expelled; and (f) the cell wall, which provides structural support (in plants). State Assessment Boundary: Specific biochemical steps or chemical processes, the role of ATP, active transport processes involving the cell membrane, or identifying or comparing different types of cells are not expected in state assessment.	
Life Science	From Molecules to Organisms: Structures and Processes	6.LS.1.3	Construct an argument supported by evidence that the body systems interact to carry out essential functions of life. Clarification Statements: Emphasis is on the functions and interactions of the body systems, not specific body parts or organs. An argument should convey that different types of cells can join together to form specialized tissues, which in turn may form organs that work together as body systems. Body systems to be included are the circulatory, digestive, respiratory, excretory, muscular/skeletal, and nervous systems. Essential functions of life include obtaining food and other nutrients (water, oxygen, minerals), releasing energy from food, removing wastes, responding to stimuli, maintaining internal conditions, and growing/developing. An example of interacting systems could include the respiratory system taking in oxygen from the environment which the circulatory system delivers to cells for cellular respiration, or the digestive system taking in nutrients which the circulatory system transports to cells around the body. State Assessment Boundaries: The	From Cells to Organisms: 10, 14, 15 Body Systems: 1, 2, 3, 4, 9, 10, 11, 12*

Discipline	Core Idea	Standard Code	Standard Text	SEPUP Unit & Activity #
			mechanism of one body system independent	
			of others or the biochemical processes	
			involved in body systems are not expected in	
			state assessment. Describing the function or	
			comparing different types of cells, tissues, or	
			organs are not expected in state assessment.	
Life Science	Biological	6.LS.4.1	Analyze and interpret evidence from the fossil	Evolution:
	Evolution: Unity		record to describe organisms and their	7, 8, 9, 10 11*
	and Diversity		environment, extinctions, and changes to life	
			forms throughout the history of Earth.	
			Clarification Statement: Examples of evidence	
			include sets of fossils that indicate a specific	
			type of environment, anatomical structures	
			that indicate the function of an organism in	
			the environment, and fossilized tracks that	
			indicate behavior of organisms.	
			State Assessment Boundary: Names of	
			individual species, geological eras in the fossil	
			record, or mechanisms for extinction or	
			speciation are not expected in state	
			assessment.	
Life Science	Biological	6.LS.4.2	Construct an argument using anatomical	Evolution:
	Evolution: Unity		structures to support evolutionary	7, 8, 9, 10, 11, 12*
	and Diversity		relationships among and between fossil	
			organisms and modern organisms.	
			Clarification Statement: Evolutionary	
			relationships include (a) some organisms have	
			similar traits with similar functions because	
			they were inherited from a common ancestor,	
			(b) some organisms have similar traits that	
			serve similar functions because they live in	
			similar environments, and (c) some organisms	
			have traits inherited from common ancestors	
			that no longer serve their original function	

Discipline	Core Idea	Standard Code	Standard Text	SEPUP Unit & Activity #
			because their environments are different than	
			their ancestors' environments.	
Physical Science	Matter and Its	6.PS.1.6	Plan and conduct an experiment involving	Chemical Reactions:
	Interactions		exothermic and endothermic chemical	2, 3, 5, 8, 9, 10, 11*
			reactions to measure and describe the release	
			or absorption of thermal energy. Clarification	
			Statements: Emphasis is on describing	
			transfer of energy to and from the	
			environment. Examples of chemical reactions	
			could include dissolving ammonium chloride	
			or calcium chloride.	
Physical Science	Matter and Its	6.PS.1.7	Use a particulate model of matter to explain	Chemistry of
	Interactions		that density is the amount of matter (mass) in	Materials:
			a given volume. Apply proportional reasoning	2, 3, 4, 7
			to describe, calculate, and compare relative	
			densities of different materials.	
Physical Science	Matter and Its	6.PS.1.8	Conduct an experiment to show that many	addressed in 2nd
	Interactions		materials are mixtures of pure substances	Edition Unit
			that can be separated by physical means into	Studying Materials
			their component pure substances.	Scientifically:
			Clarification Statement: Examples of common	3, 5
			mixtures include salt water, oil and vinegar,	
			milk, and air.	
Physical Science	Motion and	6.PS.2.4	Use evidence to support the claim that	Fields and
	Stability: Forces		gravitational forces between objects are	Interactions:
	and Interactions		attractive and are only noticeable when one	3, 4, 7*
			or both of the objects have a very large mass.	
			Clarification Statement: Examples of objects	
			with very large masses include the Sun, Earth,	
			and other planets.	
			State Assessment Boundary: Newton's law of	
			gravitation or Kepler's laws are not expected	
			in state assessment.	

Discipline	Core Idea	Standard Code	Standard Text	SEPUP Unit & Activity #
Physical Science	Waves and Their Applications in Technologies for Information Transfer	6.PS.4.1	Use diagrams of a simple wave to explain that (a) a wave has a repeating pattern with a specific amplitude, frequency, and wavelength, and (b) the amplitude of a wave is related to the energy of the wave. State Assessment Boundaries: Electromagnetic waves are not expected in state assessment. State assessment will be limited to standard repeating waves.	Waves: 1, 2, 3, 7*
Physical Science	Waves and Their Applications in Technologies for Information Transfer	6.PS.4.2	Use diagrams and other models to show that both light rays and mechanical waves are reflected, absorbed, or transmitted through various materials. Clarification Statements: Materials may include solids, liquids, and gases. Mechanical waves (including sound) need a material (medium) through which they are transmitted. Examples of models could include drawings, simulations, and written descriptions. State Assessment Boundary: State assessment will be limited to qualitative applications.	Waves: 3, 4, 8, 9, 10, 11, 12, 13*
Physical Science	Waves and Their Applications in Technologies for Information Transfer	6.PS.4.3	Present qualitative scientific and technical information to support the claim that digitized signals (sent as wave pulses representing 0s and 1s) can be used to encode and transmit information. State Assessment Boundary: Binary counting or the specific mechanism of any given device are not expected in state assessment.	Waves: 5, 6
Technology/Engineering	Engineering Design	6.ETS.1.1	Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution. Include potential impacts on people and the natural environment that may limit possible solutions.*	Biomedical Engineering: 1, 2, 3* Force and Motion: 10, 15*

Discipline	Core Idea	Standard Code	Standard Text	SEPUP Unit & Activity #
				Fields and
				Interactions:
				2, 3, 6*, 13
				Land, Water, and
				Human
				Interactions:
				7, 12*
Technology/Engineering	Engineering	6.ETS.1.5	Create visual representations of solutions to a	Biomedical
	Design		design problem. Accurately interpret and	Engineering:
			apply scale and proportion to visual	4, 5, 9
			representations.*	Fields and
			Clarification Statements: Examples of visual	Interactions:
			representations can include sketches, scaled	1, 6, 13
			drawings, and orthographic projections.	Land, Water, and
			Examples of scale can include ¼" = 1'0" and 1	Human
			cm = 1 m.	Interactions:
				7, 12, 16
Technology/Engineering	Engineering	6.ETS.1.6	Communicate a design solution to an	Biomedical
<i>577</i>	Design		intended user, including design features and	Engineering:
			limitations of the solution. Clarification	4, 5, 9
			Statement: Examples of intended users can	Fields and
			include students, parents, teachers,	Interactions:
			manufacturing personnel, engineers, and	1, 6, 13
			customers.	Land, Water, and
				Human
				Interactions:
				7, 12, 16
Technology/Engineering	Materials,	6.ETS.2.1	Analyze and compare properties of metals,	Partially addressed
J 5	Tools, and		plastics, wood, and ceramics, including	in 2nd Edition Unit
	Manufacturing		flexibility, ductility, hardness, thermal	The Chemistry of
			conductivity, electrical conductivity, and	Materials:
			melting point.	14

Discipline	Core Idea	Standard Code	Standard Text	SEPUP Unit & Activity #
Technology/Engineering	Materials, Tools, and Manufacturing	6.ETS.2.2	Given a design task, select appropriate materials based on specific properties needed in the construction of a solution.* Clarification Statement: Examples of materials can include metals, plastics, wood, and ceramics.	Biomedical Engineering: 4, 5, 9
Technology/Engineering	Materials, Tools, and Manufacturing	6.ETS.2.3	Choose and safely use appropriate measuring tools, hand tools, fasteners, and common hand-held power tools used to construct a prototype.* Clarification Statements: Examples of measuring tools include a tape measure, a meter stick, and a ruler. Examples of hand tools include a hammer, a screwdriver, a wrench, and pliers. Examples of fasteners include nails, screws, nuts and bolts, staples, glue, and tape. Examples of common power tools include jigsaw, drill, and sander.	Biomedical Engineering: 4, 5, 9

SEVENTH GRADE

Discipline	Core Idea	Standard Code	Standard Text	SEPUP Unit & Activity #
Earth and Space Sciences	Earth's	7.ESS.2.2	Construct an explanation based on	Geological Processes:
	Systems		evidence for how Earth's surface has	2, 3, 4, 5, 6, 7, 9, 10, 11, 12,
			changed over scales that range from local	13*
			to global in size.	
			Clarification Statements: Examples of	Land, Water, and Human
			processes occurring over large, global	Interactions:
			spatial scales include plate motion,	3, 4, 6, 7, 8, 10, 11, 12, 13,
			formation of mountains and ocean basins,	14*
			and ice ages. Examples of changes	
			occurring over small, local spatial scales	
			include earthquakes and seasonal	
			weathering and erosion.	
Earth and Space Sciences	Earth's Systems	7.ESS.2.4	Develop a model to explain how the	Land, Water, and Human
			energy of the Sun and Earth's gravity drive	Interactions:
			the cycling of water, including changes of	2, 5, 7, 8, 9
			state, as it moves through multiple	
			pathways in Earth's hydrosphere.	
			Clarification Statement: Examples of	
			models can be conceptual or physical.	
			State Assessment Boundary: A	
			quantitative understanding of the latent	
			heats of vaporization and fusion is not	
			expected in state assessment.	
Earth and Space Sciences	Earth and	7.ESS.3.2	Obtain and communicate information on	Geological Processes:
	Human		how data from past geologic events are	1, 3, 4, 6, 7, 8, 11, 18
	Activity		analyzed for patterns and used to forecast	
			the location and likelihood of future	
			catastrophic events. Clarification	
			Statements: Geologic events include	
			earthquakes, volcanic eruptions, floods,	
			and landslides. Examples of data typically	
			analyzed can include the locations,	

Discipline	Core Idea	Standard Code	Standard Text	SEPUP Unit & Activity #
			magnitudes, and frequencies of the	
			natural hazards. State Assessment	
			Boundary:	
			Active analysis of data or forecasting is	
			not expected in state assessment.	
Earth and Space Sciences	Earth and	7.ESS.3.4	Construct an argument supported by	Earth's Resources:
	Human Activity		evidence that human activities and	2, 4, 6, 13*
			technologies can mitigate the impact of	
			increases in human population and per	Evolution:
			capita consumption of natural resources	14
			on the environment. Clarification	
			Statements: Arguments should be based	
			on examining historical data such as	
			population graphs, natural resource	
			distribution maps, and water quality	
			studies over time. Examples of negative	
			impacts can include changes to the	
			amount and quality of natural resources	
			such as water, mineral, and energy	
			supplies.	
Life Science	From	7.LS.1.4	Construct an explanation based on	Reproduction:
	Molecules to		evidence for how characteristic animal	10*, 11*
	Organisms:		behaviors and specialized plant structures	
	Structures and		increase the probability of successful	
	Processes		reproduction of animals and plants.	
			Clarification Statements: Examples of	
			animal behaviors that affect the	
			probability of animal reproduction could	
			include nest building to protect young	
			from cold, herding of animals to protect	
			young from predators, and vocalizations	
			and colorful plumage to attract mates for	
			breeding. Examples of animal behaviors	
			that affect the probability of plant	
			reproduction could include (a) transferring	

Discipline	Core Idea	Standard Code	Standard Text	SEPUP Unit & Activity #
			pollen or seeds and (b) creating conditions	
			for seed germination and growth.	
			Examples of plant structures that affect	
			the probability of plant reproduction could	
			include bright flowers attracting	
			butterflies that transfer pollen, flower	
			nectar, and odors that attract insects that	
			transfer pollen, and hard shells on nuts	
			that squirrels bury. State Assessment	
			Boundary: Natural selection is not	
			expected in state assessment.	
Life Science	Ecosystems:	7.LS.2.1	Analyze and interpret data to provide	Ecology:
	Interactions,		evidence for the effects of periods of	5, 6, 9*
	Energy, and		abundant and scarce resources on the	
	Dynamics		growth of organisms and the size of	
			populations in an ecosystem.	
Life Science	Ecosystems:	7.LS.2.2	Describe how relationships among and	Ecology:
	Interactions,		between organisms in an ecosystem can	2, 8, 10*
	Energy, and		be competitive, predatory, parasitic, and	
	Dynamics		mutually beneficial and that these	
			interactions are found across multiple	
			ecosystems. Clarification Statement:	
			Emphasis is on describing consistent	
			patterns of interactions in different	
			ecosystems in terms of relationships	
			among and between organisms.	
Life Science	Ecosystems:	7.LS.2.3	Develop a model to describe that matter	Ecology:
	Interactions,		and energy are transferred among living	7, 8, 11, 12*
	Energy, and		and nonliving parts of an ecosystem and	
	Dynamics		that both matter and energy are	From Cells to Organisms:
			conserved through these processes.	13
			Clarification Statements: Cycling of matter	
			should include the role of photosynthesis,	
			cellular respiration, and decomposition, as	
			well as transfer among producers,	

Discipline	Core Idea	Standard Code	Standard Text	SEPUP Unit & Activity #
			consumers (primary, secondary, and	
			tertiary), and decomposers. Models may	
			include food webs and food chains. State	
			Assessment Boundary: Cycling of specific	
			atoms (such as carbon or oxygen), or the	
			biochemical steps of photosynthesis,	
			cellular respiration, and decomposition	
			are not expected in state assessment.	
Life Science	Ecosystems:	7.LS.2.4	Analyze data to provide evidence that	Ecology:
	Interactions,		disruptions (natural or human-made) to	1, 2, 3, 4, 5, 6, 13, 14*
	Energy, and		any physical or biological component of an	
	Dynamics		ecosystem can lead to shifts in all its	
			populations. Clarification Statement:	
			Focus should be on ecosystem	
			characteristics varying over time, including	
			disruptions such as hurricanes, floods,	
			wildfires, oil spills, and construction.	
Life Science	Ecosystems:	7.LS.2.5	Evaluate competing design solutions for	Ecology:
	Interactions,		protecting an ecosystem. Discuss benefits	2, 4, 15*
	Energy, and		and limitations of each design.*	
	Dynamics		Clarification Statements: Examples of	
			design solutions could include water, land,	
			and species protection and the prevention	
			of soil erosion. Examples of design	
			solution constraints could include	
			scientific, economic, and social	
			considerations.	
Life Science	Ecosystems:	7.LS.2.6	Explain how changes to the biodiversity of	not addressed
	Interactions,		an ecosystem—the variety of species	
	Energy, and		found in the ecosystem—may limit the	
	Dynamics		availability of resources humans use.	
			Clarification Statement: Examples of	
			resources can include food, energy,	
			medicine, and clean water.	

Discipline	Core Idea	Standard Code	Standard Text	SEPUP Unit & Activity #
Physical Science	Motion and Stability: Forces and Interactions	7.PS.2.3	Analyze data to describe the effect of distance and magnitude of electric charge on the strength of electric forces. Clarification Statement: Includes both attractive and repulsive forces. State Assessment Boundaries: State assessment will be limited to proportional reasoning. Calculations using Coulomb's law or interactions of subatomic particles are not expected in state assessment.	Fields and Interactions: 8, 9, 10, 11, 12, 13*, 14
Physical Science	Motion and Stability: Forces and Interactions	7.PS.2.5	Use scientific evidence to argue that fields exist between objects with mass, between magnetic objects, and between electrically charged objects that exert force on each other even though the objects are not in contact. Clarification Statement: Emphasis is on evidence that demonstrates the existence of fields, limited to gravitational, electric, and magnetic fields. State Assessment Boundary: Calculations of force are not expected in state assessment.	Fields and Interactions: 5, 7, 9, 10, 12*
Physical Science	Energy	7.PS.3.1	Construct and interpret data and graphs to describe the relationships among kinetic energy, mass, and speed of an object. Clarification Statements: Examples could include riding a bicycle at different speeds and rolling different-sized rocks downhill. Consider relationships between kinetic energy vs. mass and kinetic energy vs. speed separate from each other; emphasis is on the difference between the linear and exponential relationships. State Assessment Boundary: Calculation or	Force and Motion: 1, 2, 3, 4, 5*

Discipline	Core Idea	Standard Code	Standard Text	SEPUP Unit & Activity #
			manipulation of the formula for kinetic	
			energy is not expected in state	
			assessment.	
Physical Science	Energy	7.PS.3.2	Develop a model to describe the	Fields and Interactions:
			relationship between the relative	3, 4, 6, 7, 10, 11*
			positions of objects interacting at a	
			distance and their relative potential	Force and Motion:
			energy in the system. Clarification	1, 3, 4, 5, 10, 14
			Statements: Examples of objects within	
			systems interacting at varying distances	
			could include Earth and either a roller	
			coaster cart at varying positions on a hill	
			or objects at varying heights on shelves,	
			changing the direction/orientation of a	
			magnet, and a balloon with static	
			electrical charge being brought closer to a	
			stream of water. Examples of models	
			could include representations, diagrams,	
			pictures, and written descriptions of	
			systems. State Assessment Boundaries:	
			State assessment will be limited to	
			electric, magnetic, and gravitational	
			interactions and to interactions of two	
			objects at a time. Calculations of potential	
			energy are not expected in state	
			assessment.	
Physical Science	Energy	7.PS.3.3	Apply scientific principles of energy and	Energy:
			heat transfer to design, construct, and test	1, 7, 8, 10, 11, 12, 13*
			a device to minimize or maximize thermal	
			energy transfer.*	
			Clarification Statement: Examples of	
			devices could include an insulated box, a	
			solar cooker, and a vacuum flask. State	
			Assessment Boundary: Accounting for	
			specific heat or calculations of the total	

Discipline	Core Idea	Standard Code	Standard Text	SEPUP Unit & Activity #
			amount of thermal energy transferred is	
			not expected in state assessment.	
Physical Science	Energy	7.PS.3.4	Conduct an investigation to determine the	Energy:
			relationships among the energy	1, 4, 6, 7, 8*
			transferred, how well the type of matter	
			retains or radiates heat, the mass, and the	
			change in the average kinetic energy of	
			the particles as measured by the	
			temperature of the sample. State	
			Assessment Boundary: Calculations of	
			specific heat or the total amount of	
			thermal energy transferred are not	
			expected in state assessment.	
Physical Science	Energy	7.PS.3.5	Present evidence to support the claim that	Energy:
			when the kinetic energy of an object	2, 3, 4, 5, 6*
			changes, energy is transferred to or from	
			the object.	
			Clarification Statement: Examples of	
			empirical evidence could include an	
			inventory or other representation of the	
			energy before and after the transfer in the	
			form of temperature changes or motion of	
			an object. State Assessment Boundary:	
			Calculations of energy are not expected in	
			state assessment.	
Physical Science	Energy	7.PS.3.6	Use a model to explain how thermal	Energy:
			energy is transferred out of hotter regions	13
			or objects and into colder ones by	
			convection, conduction, and radiation.	
Physical Science	Energy	7.PS.3.7	Use informational text to describe the	Energy:
			relationship between kinetic and potential	2, 3
			energy and illustrate conversions from one	
			form to another.	
			Clarification Statement: Types of kinetic	
			energy include motion, sound, thermal,	

Discipline	Core Idea	Standard Code	Standard Text	SEPUP Unit & Activity #
			and light; types of potential energy include gravitational, elastic, and chemical.	
Technology/Engineering	Engineering Design	7.ETS.1.2	Evaluate competing solutions to a given design problem using a decision matrix to determine how well each meets the criteria and constraints of the problem. Use a model of each solution to evaluate how variations in one or more design features, including size, shape, weight, or cost, may affect the function or effectiveness of the solution.*	Fields and Interactions: 6, 13, 15 Land, Water, and Human Interactions: 7, 12, 16*
Technology/Engineering	Engineering Design	7.ETS.1.4	Generate and analyze data from iterative testing and modification of a proposed object, tool, or process to optimize the object, tool, or process for its intended purpose.*	Fields and Interactions: 1, 2, 3, 6, 11, 13*
Technology/Engineering	Engineering Design	7.ETS.1.7	Construct a prototype of a solution to a given design problem.*	Fields and Interactions: 3, 6, 13 Land, Water, and Human Interactions: 7, 12, 16*
Technology/Engineering	Technological Systems	7.ETS.3.1	Explain the function of a communication system and the role of its components, including a source, encoder, transmitter, receiver, decoder, and storage.	not addressed
Technology/Engineering	Technological Systems	7.ETS.3.2	Compare the benefits and drawbacks of different communication systems. Clarification Statements: Examples of communications systems can include radio, television, print, and Internet. Examples of benefits and drawbacks can include speed of communication, distance or range, number of people reached, audio only vs.	not addressed

Discipline	Core Idea	Standard Code	Standard Text	SEPUP Unit & Activity #
			audio and visual, and one-way vs. two-way communication.	
Technology/Engineering	Technological Systems	7.ETS.3.3	Research and communicate information about how transportation systems are designed to move people and goods using a variety of vehicles and devices. Identify and describe subsystems of a transportation vehicle, including structural, propulsion, guidance, suspension, and control subsystems. Clarification Statements: Examples of design elements include vehicle shape to maximize cargo or passenger capacity, terminals, travel lanes, and communications/controls. Examples of vehicles can include a car, sailboat, and small airplane.	Fields and Interactions: 2, 3, 6, 13, 15
Technology/Engineering	Technological Systems	7.ETS.3.4	Show how the components of a structural system work together to serve a structural function. Provide examples of physical structures and relate their design to their intended use. Clarification Statements: Examples of components of a structural system could include foundation, decking, wall, and roofing. Explanations of function should include identification of live vs. dead loads and forces of tension, torsion, compression, and shear. Examples of uses include carrying loads and forces across a span (such as a bridge), providing livable space (such as a house or office building),	Biomedical Engineering: 4, 5, 8, 9

Discipline	Core Idea	Standard Code	Standard Text	SEPUP Unit & Activity #
			and providing specific environmental conditions (such as a greenhouse or cold storage). State Assessment Boundary: Calculations of magnitude or direction of loads or forces are not expected in state assessment.	
Technology/Engineering	Technological Systems	7.ETS.3.5	Use the concept of systems engineering to model inputs, processes, outputs, and feedback among components of a transportation, structural, or communication system.	not addressed

EIGHTH GRADE

Discipline	Core Idea	Standard Code	Standard Text	SEPUP Unit & Activity #
Earth and Space Sciences	Earth's Place	8.ESS.1.1	Develop and use a model of the Earth-Sun	Solar System and Beyond:
	in the		system to explain the cyclical pattern of	6, 7, 8, 9*
	Universe		seasons, which includes Earth's tilt and	
			differential intensity of sunlight on	
			different areas of Earth across the year.	
			Clarification Statement: Examples of	
			models can be physical or graphical.	
Earth and Space Sciences	Earth's Place in	8.ESS.1.2	Explain the role of gravity in ocean tides,	Solar System and Beyond:
	the Universe		the orbital motions of planets, their	10, 11, 12, 14, 15, 16*
			moons, and asteroids in the solar system.	
			State Assessment Boundary: Kepler's laws	
			of orbital motion or the apparent	
			retrograde motion of the planets as	
			viewed from Earth are not expected in	
			state assessment.	
Earth and Space Sciences	Earth's Systems	8.ESS.2.1	Use a model to illustrate that energy from	Geological Processes:
			Earth's interior drives convection that	2, 5, 8, 9, 10, 11, 13, 14,
			cycles Earth's crust, leading to melting,	15*
			crystallization, weathering, and	
			deformation of large rock formations,	
			including generation of ocean sea floor at	
			ridges, submergence of ocean sea floor at	
			trenches, mountain building, and active	
			volcanic chains. Clarification Statement:	
			The emphasis is on large-scale cycling	
			resulting from plate tectonics.	
Earth and Space Sciences	Earth's Systems	8.ESS.2.5	Interpret basic weather data to identify	Weather and Climate:
			patterns in air mass interactions and the	2, 3, 7, 9, 10, 11, 12, 13*
			relationship of those patterns to local	
			weather.	
			Clarification Statements: Data includes	
			temperature, pressure, humidity,	
			precipitation, and wind. Examples of	

Discipline	Core Idea	Standard Code	Standard Text	SEPUP Unit & Activity #
			patterns can include air masses flow from	
			regions of high pressure to low pressure,	
			and how sudden changes in weather can	
			result when different air masses collide.	
			Data can be provided to students (such as	
			in weather maps, data tables, diagrams, or	
			visualizations) or obtained through field	
			observations or laboratory experiments.	
			State Assessment Boundary: Specific	
			names of cloud types or weather symbols	
			used on weather maps are not expected in	
			state assessment.	
Earth and Space Sciences	Earth's Systems	8.ESS.2.6	Describe how interactions involving the	Weather and Climate:
			ocean affect weather and climate on a	2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
			regional scale, including the influence of	13, 14*
			the ocean temperature as mediated by	
			energy input from the Sun and energy loss	
			due to evaporation or redistribution via	
			ocean currents. Clarification Statement: A	
			regional scale includes a state or multi-	
			state perspective. State Assessment	
			Boundary: Koppen Climate Classification	
			names are not expected in state	
			assessment.	
Earth and Space Sciences	Earth and	8.ESS.3.1	Analyze and interpret data to explain that	Earth's Resources:
	Human Activity		the Earth's mineral and fossil fuel	1, 2, 3, 5, 7, 8, 14*
			resources are unevenly distributed as a	
			result of geologic processes.	Geological Processes:
			Clarification Statement: Examples of	2, 16*, 17*
			uneven distributions of resources can	
			include where petroleum is generally	
			found (locations of the burial of organic	
			marine sediments and subsequent	
			geologic traps), and where metal ores are	

Discipline	Core Idea	Standard Code	Standard Text	SEPUP Unit & Activity #
			generally found (locations of past volcanic	
			and hydrothermal activity).	
Earth and Space Sciences	Earth and	8.ESS.3.5	Examine and interpret data to describe	Weather and Climate:
	Human Activity		the role that human activities have played	1, 10, 14, 15, 16*
			in causing the rise in global temperatures	
			over the past century.	
			Clarification Statements: Examples of	
			human activities include fossil fuel	
			combustion, deforestation, and	
			agricultural activity. Examples of evidence	
			can include tables, graphs, and maps of	
			global and regional temperatures;	
			atmospheric levels of gases such as carbon	
			dioxide and methane; and the rates of	
			human activities.	
Life Science	From Molecules	8.LS.1.5	Construct an argument based on evidence	Reproduction:
	to Organisms:		for how environmental and genetic factors	1, 7*
	Structures and		influence the growth of organisms.	
	Processes		Clarification Statements: Examples of	
			environmental conditions could include	
			availability of food, light, space, and	
			water. Examples of genetic factors could	
			include the genes responsible for size	
			differences in different breeds of dogs,	
			such as Great Danes and Chihuahuas.	
			Examples of environmental factors could	
			include drought decreasing plant growth,	
			fertilizer increasing plant growth, and fish	
			growing larger in large ponds than they do	
			in small ponds. Examples of both genetic	
			and environmental factors could include	
			different varieties of plants growing at	
			different rates in different conditions.	
			State Assessment Boundary: Methods of	
			reproduction, genetic mechanisms, gene	

Discipline	Core Idea	Standard Code	Standard Text	SEPUP Unit & Activity #
			regulation, biochemical processes, or	
			natural selection are not expected in state	
			assessment.	
Life Science	From Molecules	8.LS.1.7	Use informational text to describe that	From Cells to Organisms:
	to Organisms:		food molecules, including carbohydrates,	5, 11*
	Structures and		proteins, and fats, are broken down and	
	Processes		rearranged through chemical reactions	Body Systems:
			forming new molecules that support cell	5
			growth and/or release of energy. State	
			Assessment Boundary: Specific details of	
			the chemical reaction for cellular	
			respiration, biochemical steps of breaking	
			down food, or the resulting molecules	
			(e.g., carbohydrates are broken down into	
			monosaccharides) are not expected in	
			state assessment.	
Life Science	Heredity:	8.LS.3.1	Develop and use a model to describe that	Reproduction:
	Inheritance and		structural changes to genes (mutations)	1, 3, 8, 12, 13*
	Variation of		may or may not result in changes to	
	Traits		proteins, and if there are changes to	Evolution:
			proteins there may be harmful, beneficial,	3, 4, 5*
			or neutral changes to traits. Clarification	
			Statements: An example of a beneficial	
			change to the organism may be a strain of	
			bacteria becoming resistant to an	
			antibiotic. A harmful change could be the	
			development of cancer; a neutral change	
			may change the hair color of an organism	
			with no direct consequence. State	
			Assessment Boundary: Specific changes at	
			the molecular level (e.g., amino acid	
			sequence change), mechanisms for	
			protein synthesis, or specific types of	
			mutations are not expected in state	
			assessment.	

Discipline	Core Idea	Standard Code	Standard Text	SEPUP Unit & Activity #
Life Science	Heredity:	8.LS.3.2	Construct an argument based on evidence	Reproduction:
	Inheritance and		for how asexual reproduction results in	1, 2, 3, 4, 5, 6, 8, 9*
	Variation of		offspring with identical genetic	
	Traits		information and sexual reproduction	
			results in offspring with genetic variation.	
			Compare and contrast advantages and	
			disadvantages of asexual and sexual	
			reproduction.	
			Clarification Statements: Examples of an	
			advantage of sexual reproduction can	
			include genetic variation when the	
			environment changes or a disease is	
			introduced, while examples of an	
			advantage of asexual reproduction can	
			include not using energy to find a mate	
			and fast reproduction rates. Examples of a	
			disadvantage of sexual reproduction can	
			include using resources to find a mate,	
			while a disadvantage in asexual	
			reproduction can be the lack of genetic	
			variation when the environment changes	
			or a disease is introduced.	
Life Science	Heredity:	8.LS.3.3	Communicate through writing and in	Reproduction:
	Inheritance and		diagrams that chromosomes contain many	12, 13*
	Variation of		distinct genes and that each gene holds	
	Traits		the instructions for the production of	
			specific proteins, which in turn affects the	
			traits of an individual. State Assessment	
			Boundary: Specific changes at the	
			molecular level or mechanisms for protein	
			synthesis are not expected in state	
			assessment.	
Life Science	Heredity:	8.LS.3.4	Develop and use a model to show that	Reproduction:
	Inheritance and		sexually reproducing organisms have two	3, 4, 5, 6, 8, 9
	Variation of		of each chromosome in their cell nuclei,	

Discipline	Core Idea	Standard Code	Standard Text	SEPUP Unit & Activity #
	Traits		and hence two variants (alleles) of each	
			gene that can be the same or different	
			from each other, with one random	
			assortment of each chromosome passed	
			down to offspring from both parents.	
			Clarification Statement: Examples of	
			models can include Punnett squares,	
			diagrams (e.g., simple pedigrees), and	
			simulations. State Assessment Boundary:	
			State assessment will limit inheritance	
			patterns to dominant-recessive alleles	
			only.	
Life Science	Biological	8.LS.4.4	Use a model to describe the process of	Evolution:
	Evolution: Unity		natural selection, in which genetic	1, 2, 3, 4*
	and Diversity		variations of some traits in a population	
			increase some individuals' likelihood of	
			surviving and reproducing in a changing	
			environment. Provide evidence that	
			natural selection occurs over many	
			generations.	
			Clarification Statements: The model	
			should include simple probability	
			statements and proportional reasoning.	
			Examples of evidence can include Darwin's	
			finches, necks of giraffes, and peppered	
			moths. State Assessment Boundary:	
			Specific conditions that lead to natural	
			selection are not expected in state	
			assessment.	
Life Science	Biological	8.LS.4.5	Synthesize and communicate information	Evolution:
	Evolution: Unity		about artificial selection, or the ways in	14, 15, 16*
	and Diversity		which humans have changed the	
	·		inheritance of desired traits in organisms.	
			Clarification Statement: Emphasis is on the	
			influence of humans on genetic outcomes	

Discipline	Core Idea	Standard Code	Standard Text	SEPUP Unit & Activity #
			in artificial selection (such as genetic	
			modification, animal husbandry, and gene	
			therapy).	
Physical Science	Matter and Its	8.PS.1.1	Develop a model to describe that (a)	Chemistry of Materials:
	Interactions		atoms combine in a multitude of ways to	2, 6, 7, 12*
			produce pure substances which make up	
			all of the living and nonliving things that	
			we encounter, (b) atoms form molecules	
			and compounds that range in size from	
			two to thousands of atoms, and (c)	
			mixtures are composed of different	
			proportions of pure substances.	
			Clarification Statement: Examples of	
			molecular-level models could include	
			drawings, three-dimensional ball and stick	
			structures, and computer representations	
			showing different molecules with different	
			types of atoms.	
			State Assessment Boundary: Valence	
			electrons and bonding energy, the ionic	
			nature of subunits of complex structures,	
			complete depictions of all individual atoms	
			in a complex molecule or extended	
			structure, or calculations of proportions in	
			mixtures are not expected in state	
			assessment.	
Physical Science	Matter and Its	8.PS.1.2	Analyze and interpret data on the	Chemical Reactions:
	Interactions		properties of substances before and after	1, 2, 3, 4, 5*
			the substances interact to determine if a	
			chemical reaction has occurred.	
			Clarification Statements: Examples of	
			reactions could include burning sugar or	
			steel wool, fat reacting with sodium	
			hydroxide, and mixing zinc with HCl.	
			Properties of substances include density,	

Discipline	Core Idea	Standard Code	Standard Text	SEPUP Unit & Activity #
			melting point, boiling point, solubility,	
			flammability, and odor.	
Physical Science	Matter and Its	8.PS.1.4	Develop a model that describes and	Chemistry of Materials:
	Interactions		predicts changes in particle motion,	8, 9, 10*
			relative spatial arrangement, temperature,	
			and state of a pure substance when	
			thermal energy is added or removed.	
			Clarification Statements: Emphasis is on	
			qualitative molecular-level models of	
			solids, liquids, and gases to show that	
			adding or removing thermal energy	
			increases or decreases kinetic energy of	
			the particles until a change of state occurs.	
			Examples of models could include	
			drawings and diagrams. Examples of pure	
			substances could include water, carbon	
			dioxide, and helium.	
Physical Science	Matter and Its	8.PS.1.5	Use a model to explain that atoms are	Chemical Reactions:
	Interactions		rearranged during a chemical reaction to	1, 2, 3, 4, 5, 6, 7*
			form new substances with new properties.	
			Explain that the atoms present in the	
			reactants are all present in the products	
			and thus the total number of atoms is	
			conserved. Clarification Statement:	
			Examples of models can include physical	
			models or drawings, including digital	
			forms, that represent atoms. State	
			Assessment Boundary: Use of atomic	
			masses, molecular weights, balancing	
			symbolic equations, or intermolecular	
			forces is not expected in state assessment.	
Physical Science	Motion and	8.PS.2.1	Develop a model that demonstrates	Force and Motion:
	Stability: Forces		Newton's third law involving the motion of	1, 10, 11, 12*
	and Interactions		two colliding objects. State Assessment	
			Boundary: State assessment will be limited	

Discipline	Core Idea	Standard Code	Standard Text	SEPUP Unit & Activity #
			to vertical or horizontal interactions in one	
			dimension.	
Physical Science	Motion and	8.PS.2.2	Provide evidence that the change in an	Force and Motion:
	Stability: Forces		object's speed depends on the sum of the	1, 6, 7, 8, 9, 13*
	and Interactions		forces on the object (the net force) and	
			the mass of the object.	
			Clarification Statement: Emphasis is on	
			balanced (Newton's first law) and	
			unbalanced forces in a system, qualitative	
			comparisons of forces, mass, and changes	
			in speed (Newton's second law) in one	
			dimension. State Assessment Boundaries:	
			State assessment will be limited to forces	
			and changes in motion in one dimension	
			in an inertial reference frame and to	
			change in one variable at a time. The use	
			of trigonometry is not expected in state	
			assessment.	
Technology/Engineering	Materials, Tools,	8.ETS.2.4	Use informational text to illustrate that	not addressed
	and		materials maintain their composition	
	Manufacturing		under various kinds of physical processing;	
			however, some material properties may	
			change if a process changes the	
			particulate structure of a material.	
			Clarification Statements: Examples of	
			physical processing can include cutting,	
			forming, extruding, and sanding. Examples	
			of changes in material properties can	
			include a non-magnetic iron material	
			becoming magnetic after hammering and	
			a plastic material becoming rigid (less	
			elastic) after heat treatment.	
Technology/Engineering	Materials, Tools,	8.ETS.2.5	Present information that illustrates how a	not addressed
	and		product can be created using basic	
	Manufacturing		processes in manufacturing systems,	

Discipline	Core Idea	Standard Code	Standard Text	SEPUP Unit & Activity #
			including forming, separating,	
			conditioning, assembling, finishing, quality	
			control, and safety. Compare the	
			advantages and disadvantages of human	
			vs. computer control of these processes.	