

Proven Science Programs

Gizmos Alignment to Issues and Science, developed by SEPUP

July, 2020

Note, Gizmos are available separately at <u>https://www.explorelearning.com</u>, this list is not an implied endorsement of the content, just supplied by the Lab-Aids Product Management Team as a service for teachers who use Gizmos. This list is arranged by NGSS PE.

MS-PS1: Matter and Its Interactions

MS-PS1-1: Develop models to describe the atomic composition of simple molecules and extended structures.

<u>Covalent Bonds</u> <u>Dehydration Synthesis</u> (glucose) Chemistry of Materials

MS-PS1-2: Analyze and interpret data on the properties of substances before and after the substances interact to determine if a chemical reaction has occurred.

Chemical Changes

Chemical Reactions

MS-PS1-4: Develop a model that predicts and describes changes in particle motion, temperature, and state of a pure substance when thermal energy is added or removed.

Melting Points	Chemistry of Materials
Phase Changes	Chemistry of Materials
Phases of Water	Chemistry of Materials
Temperature and Particle Motion	Chemistry of Materials

MS-PS1-5: Develop and use a model to describe how the total number of atoms does not change in a chemical reaction and thus mass is conserved.

Balancing Chemical Equations	Chemical Reactions
Chemical Changes	Chemical Reactions
Chemical Equations	Chemical Reactions

MS-PS1-6: Undertake a design project to construct, test, and modify a device that either releases or absorbs thermal energy by chemical processes.

Feel the Heat

Chemical Reactions

MS-PS2: Motion and Stability: Forces and Interactions

MS-PS2-1: Apply Newton's Third Law to design a solution to a problem involving the motion of two colliding objects.

Crumple Zones

Force & Motion

MS-PS2-2: Plan an investigation to provide evidence that the change in an object's motion depends on the sum of the forces on the object and the mass of the object.

<u>Crumple Zones</u>	Force & Motion
Fan Cart Physics	Force & Motion
Force and Fan Carts	Force & Motion
Free-Fall Laboratory	Fields & Interactions, Force & Motion

MS-PS2-3: Ask questions about data to determine the factors that affect the strength of electric and magnetic forces.

Charge Launcher	Fields & Interactions
Electromagnetic Induction	Fields & Interactions
Magnetic Induction	Fields & Interactions
<u>Pith Ball Lab</u>	Fields & Interactions

MS-PS2-4: Construct and present arguments using evidence to support the claim that gravitational interactions are attractive and depend on the masses of interacting objects.

Gravitational Force	Fields & Interactions
Gravity Pitch	Fields & Interactions
Weight and Mass	Fields & Interactions

MS-PS2-5: Conduct an investigation and evaluate the experimental design to provide evidence that fields exist between objects exerting forces on each other even though the objects are not in contact.

Charge Launcher	
<u>Coulomb Force (Static)</u>	
Electromagnetic Induction	
Magnetic Induction	
Magnetism	
Pith Ball Lab	

Fields & Interactions Fields & Interactions

MS-PS3: Energy

MS-PS3-1: Construct and interpret graphical displays of data to describe the relationships of kinetic energy to the mass of an object and to the speed of an object.

<u>Air Track</u> <u>Energy of a Pendulum</u> <u>Inclined Plane - Sliding Objects</u> <u>Roller Coaster Physics</u> <u>Sled Wars</u> <u>Trebuchet</u> Force & Motion Energy Force & Motion Energy Fields and Interactions, Force & Motion Energy

MS-PS3-2: Develop a model to describe that when the arrangement of objects interacting at a distance changes, different amounts of potential energy are stored in the system.

Energy Conversion in a System	Energy
Energy of a Pendulum	Energy
Inclined Plane - Sliding Objects	Force & Motion
Potential Energy on Shelves	Force & Motion
Roller Coaster Physics	Energy
Trebuchet	

MS-PS3-3: Apply scientific principles to design, construct, and test a device that either minimizes or maximizes thermal energy transfer.

<u>Feel the Heat</u>	Energy
	- 07

MS-PS3-4: Plan an investigation to determine the relationships among the energy transferred, the type of matter, the mass, and the change in the average kinetic energy of the particles as measured by the temperature of the sample.

Energy
Energy
Energy
Chemistry of Materials

MS-PS3-5: Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object.

<u>Air Track</u>	Force & Motion
Energy Conversion in a System	Energy
<u>Sled Wars</u>	Fields and Interactions, Force & Motion

MS-PS4: Waves and Their Applications in Technologies for Information Transfer

MS-PS4-1: Use mathematical representations to describe a simple model for waves that includes how the amplitude of a wave is related to the energy in a wave.

<u>Waves</u>

Waves

MS-PS4-2: Develop and use a model to describe that waves are reflected, absorbed, or transmitted through various materials.

Basic Prism
Color Absorption
Earthquakes 1 - Recording Station
Heat Absorption
Laser Reflection
Longitudinal Waves
Radiation
<u>Refraction</u>
<u>Ripple Tank</u>
Waves

Waves Waves Geological Processes Weather and Climate Waves Waves Waves Waves Waves Waves MS-LS1: From Molecules to Organisms: Structures and Processes

MS-LS1-1: Conduct an investigation to provide evidence that living things are made of cells, either one cell or many different numbers and types of cells.

<u>Cell Types</u>	Cells
Embryo Development	Evolution

MS-LS1-2: Develop and use a model to describe the function of a cell as a whole and ways parts of cells contribute to the function.

<u>Cell Energy Cycle</u>	Cells
<u>Cell Structure</u>	Cells
<u>Cell Types</u>	Cells
<u>Osmosis</u>	Cells
RNA and Protein Synthesis	Reproduction

MS-LS1-3: Use argument supported by evidence for how the body is a system of interacting subsystems composed of groups of cells.

<u>Cell Types</u>	Cells
<u>Circulatory System</u>	Body Systems
Digestive System	Body Systems
<u>Senses</u>	Body Systems

MS-LS1-4: Use argument based on empirical evidence and scientific reasoning to support an explanation for how characteristic animal behaviors and specialized plant structures affect the probability of successful reproduction of animals and plants respectively.

Flower Pollination	Reproduction
<u>Honeybee Hive</u>	Reproduction
Seed Germination	Reproduction

MS-LS1-5: Construct a scientific explanation based on evidence for how environmental and genetic factors influence the growth of organisms.

Fast Plants [–] 1 - Growth and Genetics	Reproduction
Growing Plants	Reproduction
<u>Inheritance</u>	Reproduction
Measuring Trees	Reproduction
Seed Germination	Reproduction
Temperature and Sex Determination	Reproduction
Temperature and Sex Determination	- Metric Reproduction

MS-LS1-6: Construct a scientific explanation based on evidence for the role of photosynthesis in the cycling of matter and flow of energy into and out of organisms.

Cell Energy Cycle	
Food Chain	

Cells Ecology

<u>Photosynthesis Lab</u>	Cells
Plants and Snails	Cells
Pond Ecosystem	Ecology

MS-LS1-7: Develop a model to describe how food is rearranged through chemical reactions forming new molecules that support growth and/or release energy as this matter moves through an organism.

<u>Cell Energy Cycle</u>	Cells
Dehydration Synthesis	
Digestive System	Body Systems

MS-LS1-8: Gather and synthesize information that sensory receptors respond to stimuli by sending messages to the brain for immediate behavior or storage as memories.

Reaction	Time 1	(Graphs and	d Statistics)	Body Systems
<u>Senses</u>				Body Systems

MS-LS2: Ecosystems: Interactions, Energy, and Dynamics

MS-LS2-1: Analyze and interpret data to provide evidence for the effects of resource availability on organisms and populations of organisms in an ecosystem.

<u> Coral Reefs 1 - Abiotic Factors</u>	Ecology
<u> Coral Reefs 2 - Biotic Factors</u>	Ecology
Food Chain	Ecology
Forest Ecosystem	Ecology
Pond Ecosystem	Ecology
<u>Prairie Ecosystem</u>	Ecology
Rabbit Population by Season	Ecology
Rainfall and Bird Beaks	Evolution
<u> Rainfall and Bird Beaks - Metric</u>	Evolution

MS-LS2-2: Construct an explanation that predicts patterns of interactions among organisms across multiple ecosystems.

Coral Reefs 1 - Abiotic Factors	Ecology
Coral Reefs 2 - Biotic Factors	Ecology
Food Chain	Ecology
Forest Ecosystem	Ecology
Pond Ecosystem	Ecology
Prairie Ecosystem	Ecology

MS-LS2-3: Develop a model to describe the cycling of matter and flow of energy among living and nonliving parts of an ecosystem.

<u>Carbon Cycle</u>	Ecology
<u> Coral Reefs 1 - Abiotic Factors</u>	Ecology

<u> Coral Reefs 2 - Biotic Factors</u>	Ecology
Food Chain	Ecology
<u>Forest Ecosystem</u>	Ecology
Pond Ecosystem	Ecology
Prairie Ecosystem	Ecology

MS-LS2-4: Construct an argument supported by empirical evidence that changes to physical or biological components of an ecosystem affect populations.

<u> Coral Reefs 1 - Abiotic Factors</u>	Ecology
<u> Coral Reefs 2 - Biotic Factors</u>	Ecology
Food Chain	Ecology
<u>Forest Ecosystem</u>	Ecology
Pond Ecosystem	Ecology
Prairie Ecosystem	Ecology
Rabbit Population by Season	Ecology
Rainfall and Bird Beaks	Evolution
<u> Rainfall and Bird Beaks - Metric</u>	Evolution

MS-LS2-5: Evaluate competing design solutions for maintaining biodiversity and ecosystem services.

Coral Reefs 2 - Biotic Factors	Ecology
GMOs and the Environment	Land, Water and Human Interactions

MS-LS3: Heredity: Inheritance and Variation of Traits <u>Evolution - STEM Case</u> Evolution

MS-LS3-1: Develop and use a model to describe why structural changes to genes (mutations) located on chromosomes may affect proteins and may result in harmful, beneficial, or neutral effects to the structure and function of the organism.

Evolution: Mutation and Selection	Evolution
Genetic Engineering	Reproduction
<u>Human Karyotyping</u>	Reproduction

MS-LS3-2: Develop and use a model to describe why asexual reproduction results in offspring with identical genetic information and sexual reproduction results in offspring with genetic variation.

Chicken Genetics	Reproduction
Fast Plants-1 - Growth and Genetics	Reproduction
<u>Fast Plants-2 - Mystery Parent</u>	Reproduction
<u>Inheritance</u>	Reproduction
<u>Mouse Genetics (One Trait)</u>	Reproduction
Mouse Genetics (Two Traits)	Reproduction

MS-LS4: Biological Evolution: Unity and Diversity

MS-LS4-1: Analyze and interpret data for patterns in the fossil record that document the existence, diversity, extinction, and change of life forms throughout the history of life on Earth under the assumption that natural laws operate today as in the past.

Human Evolution - Skull Analysis Evolution

MS-LS4-2: Apply scientific ideas to construct an explanation for the anatomical similarities and differences among modern organisms and between modern and fossil organisms to infer evolutionary relationships.

<u>Cladograms</u>	Evolution
Embryo Development	Evolution
Human Evolution - Skull Analysis	Evolution

MS-LS4-3: Analyze displays of pictorial data to compare patterns of similarities in the embryological development across multiple species to identify relationships not evident in the fully formed anatomy.

Embryo Development	Evolution
--------------------	-----------

MS-LS4-4: Construct an explanation based on evidence that describes how genetic variations of traits in a population increase some individuals' probability of surviving and reproducing in a specific environment.

Evolution: Mutation and Selection	Evolution
Evolution: Natural and Artificial Selection	Evolution
<u>Microevolution</u>	Evolution
Natural Selection	Evolution
Rainfall and Bird Beaks - Metric	Evolution

MS-LS4-5: Gather and synthesize information about the technologies that have changed the way humans influence the inheritance of desired traits in organisms.

Evolution: Natural and Artificial Selection	Evolution
Genetic Engineering	Reproduction

MS-LS4-6: Use mathematical representations to support explanations of how natural selection may lead to increases and decreases of specific traits in populations over time.

Evolution: Mutation and Selection	Evolution
Evolution: Natural and Artificial Selection	Evolution
<u>Microevolution</u>	Evolution

MS-ESS1: Earth's Place in the Universe

MS-ESS1-1: Develop and use a model of the Earth-sun-moon system to describe the cyclic patterns of lunar phases, eclipses of the sun and moon, and seasons.

2D Eclipse 3D Eclipse Eclipse Moonrise, Moonset, and Phases Phases of the Moon Seasons Around the World Seasons in 3D Seasons: Earth, Moon, and Sun Seasons: Why do we have them? Summer and Winter Solar System and Beyond Solar System and Beyond

MS-ESS1-2: Develop and use a model to describe the role of gravity in the motions within galaxies and the solar system.

Gravity Pitch	Solar System and Beyond
<u>Solar System</u>	Solar System and Beyond
Solar System Explorer	Solar System and Beyond

MS-ESS1-3: Analyze and interpret data to determine scale properties of objects in the solar system.

<u>Solar System</u>	Solar System and Beyond
<u>Solar System Explorer</u>	Solar System and Beyond
Weight and Mass	Solar System and Beyond

MS-ESS2: Earth's Systems

MS-ESS2-1: Develop a model to describe the cycling of Earth's materials and the flow of energy that drives this process.

Carbon Cycle	Geological Processes
<u>Cell Energy Cycle</u>	Cells
<u>Plate Tectonics</u>	Geological Processes
Rock Cycle	Geological Processes
<u>Weathering</u>	Geological Processes

MS-ESS2-2: Construct an explanation based on evidence for how geoscience processes have changed Earth's surface at varying time and spatial scales.

Erosion Rates	Geological Processes
Plate Tectonics	Geological Processes
River Erosion	Land, Water and Human Interactions

Rock Cycle
Weathering

Geological Processes Geological Processes

MS-ESS2-3: Analyze and interpret data on the distribution of fossils and rocks, continental shapes, and seafloor structures to provide evidence of the past plate motions.

Building Pangaea	Geological Processes
Plate Tectonics	Geological Processes

MS-ESS2-4: Develop a model to describe the cycling of water through Earth's systems driven by energy from the sun and the force of gravity.

		~	
<u>۱۸</u> /	ator	· (vc	
V V	ater	Cyc	IC.

Land, Water, and Human Interactions

MS-ESS2-5: Collect data to provide evidence for how the motions and complex interactions of air masses results in changes in weather conditions.

Coastal Winds and Clouds	
Coastal Winds and Clouds - Metric	
Hurricane Motion	
<u>Hurricane Motion - Metric</u>	
Weather Maps	
<u>Weather Maps - Metric</u>	

Weather and Climate Weather and Climate

MS-ESS3: Earth and Human Activity

MS-ESS3-1: Construct a scientific explanation based on evidence for how the uneven distributions of Earth's mineral, energy, and groundwater resources are the result of past and current geoscience processes.

0		<u> </u>	
(ar	hon		Δ
Car		Cyc	

Geological Processes

MS-ESS3-2: Analyze and interpret data on natural hazards to forecast future catastrophic events and inform the development of technologies to mitigate their effects.

<u>Hurricane Motion - Metric</u>	Weat
----------------------------------	------

Weather and Climate

MS-ESS3-3: Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment.

<u>GMOs and the Environment</u> Land, Water, and Human Interactions

MS-ESS3-4: Construct an argument supported by evidence for how increases in human population and per-capita consumption of natural resources impact Earth's systems.

<u>Carbon Cycle</u>	
Coral Reefs 2 - Biotic Factors	

Geological Processes Ecology MS-ESS3-5: Ask questions to clarify evidence of the factors that have caused the rise in global temperatures over the past century.

<u>Carbon Cycle</u> <u>Greenhouse Effect</u> <u>Greenhouse Effect - Metric</u> Geological Processes Weather and Climate Weather and Climate MS-ETS1: Engineering Design

MS-ETS1-1: Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.

<u>Feel the Heat</u> <u>GMOs and the Environment</u> <u>Genetic Engineering</u> <u>Pendulum Clock</u> <u>Trebuchet</u> Chemical Reactions Land, Water, and Human Interactions Biomedical Engineering

MS-ETS1-2: Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.

Digestive System Feel the Heat GMOs and the Environment Genetic Engineering Pendulum Clock Trebuchet Body Systems Chemical Reactions Land, Water, and Human Interactions Biomedical Engineering

MS-ETS1-3: Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success.

Digestive System GMOs and the Environment Genetic Engineering Body Systems Land, Water, and Human Interactions Biomedical Engineering

MS-ETS1-4: Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.

<u>Feel the Heat</u> <u>Pendulum Clock</u> <u>Trebuchet</u> **Chemical Reactions**