

Lab-Aids Correlations for

COLORADO SCIENCE STANDARDS MIDDLE SCHOOL LEVEL

GRADES 6-8

Mark Koker, Ph D, Director of Curriculum & Professional Development, LAB-AIDS

Din Seaver and Lisa Kelp, Curriculum Specialists, LAB-AIDS

This document is intended to show how the SEPUP 3rd edition materials align with the 2019-20 *Colorado Middle Level Science Standards*¹.

ABOUT THE COLORADO SCIENCE STANDARDS

The Colorado Academic Standards in science represent what all Colorado students should know and be able to do in science as a result of their preschool through twelfth-grade science education. Specific expectations are given for students who complete each grade from preschool through eighth grade and for high school. These standards outline the essential level of science content knowledge and the application of the skills needed by all Colorado citizens to participate productively in our increasingly global, information-driven society.

ABOUT OUR PROGRAMS

Lab-Aids has maintained its home offices and operations in Ronkonkoma, NY, since 1963. We publish over 200 kits and core curriculum programs to support science teaching and learning, grades 6-12. All core curricula support an inquiry-driven pedagogy, with support for literacy skill development and with assessment programs that clearly show what students know and are able to do as a result of program use. All programs have extensive support for technology and

¹ https://www.cde.state.co.us/coscience/2020cas-sc-ms

feature comprehensive teacher support. For more information please visit www.lab-aids.com.

SEPUP

Materials from the Science Education for Public Understanding Program (SEPUP) are developed at the Lawrence Hall of Science, at the University of California, Berkeley, and distributed nationally by LAB- AIDS, Inc. Since 1987, development of SEPUP materials has been supported by grants from the National Science Foundation and other public and private sources. SEPUP programs include student books, equipment kits, teacher materials, and online digital content, and are available as full year courses, or separately, as 17 units, each taking 3-8 weeks to complete, as listed below.

Middle Level. Grades 6-8

Earth Science	Life Science	Physical Science
Earth's Resources	Biomedical Engineering	Chemistry of Materials
Geological Processes	Body Systems	Chemical Reactions
Land, Water, and Human	Ecology	Energy
Interactions		
Solar System and Beyond	From Cells to Organisms	Force and Motion
Weather and Climate	Evolution	Fields and Interactions
	Reproduction	Waves

ABOUT THE LAB-AIDS CITATIONS

The following tables are presented showing GLE, evidence outcomes, and where found in SEPUP.

Citations included in the correlation document are as follows:

 $\ensuremath{^{*}}$ indicates where Performance Expectation is assessed

Unit title, Activity Number

The Chemistry of Materials, 14

Evidence Outcomes,

Expressed as Performance Expectations MS-PS1-2
Colorado Skills and SEP As listed
Crosscutting concepts As listed

PREPARED	COLORADO GRADE	EVIDENCE	CO ESSENTIAL SKILLS &	CROSSCUTTING	WHERE FOUND				
GRADUATES	LEVEL EXPECTATION	OUTCOMES	SCI/ENGIN PRACTICES	CONCEPTS	IN SEPUP				
	STANDARD 1. PHYSICAL SCIENCE								
1. Students can	1. The fact that	MS-PS1-1	Develop a model	Scale, proportion,	Chemistry of				
use the full range	matter is composed			quantity	Materials: 2, 6,				
of science and	of atoms and		Analyze and interpret data		7, 12*				
engineering	molecules can be	MS-PS1-2		Patterns	Chemical				
practices to make	used to explain the		Gather, read, and		Reactions: 1, 2,				
sense of natural	properties of		synthesize information	Structure &	<i>3, 4, 5*</i>				
phenomena and	substances, diversity	MS-PS1-3		function	Chemistry of				
solve problems	of materials, states of		Connections to NOS		Materials: 1, 2,				
that require	matter and phases			Interdependence	3, 4, 5, 11, 12,				
understanding	changes.			of SET	13*				
structure,		MS-PS1-4			Chemistry of				
properties and				Influence of SET on	Materials: 8, 9,				
interactions of				society and natural	10				
matter.				world					
	2. Reacting	MS-PS1-2	Develop a model	Energy and matter	Chemical				
	substances rearrange				Reactions: 1, 2,				
	to form different		Undertake a design project		3, 4, 5*				
	molecules, but the	MS-PS1-5			Chemical				
	number of atoms is		Connections to NOS		Reactions: 1, 2,				
	conserved. Some				3, 4, 5, 6, 7*				
	reactions release	MS-PS1-6			Chemical				
	energy and others				Reactions: 2, 3,				
	absorb energy.				5, 8, 9, 10, 11*				
2. Students can	3. Motion is	MS-PS2-1	Apply scientific ideas or	Systems and	Force and				
use the full range	described relative to		principles	system models	Motion: 1, 10,				
of science and	a reference frame				11, 12*				

PREPARED	COLORADO GRADE	EVIDENCE	CO ESSENTIAL SKILLS &	CROSSCUTTING	WHERE FOUND
GRADUATES · ·	LEVEL EXPECTATION	OUTCOMES	SCI/ENGIN PRACTICES	CONCEPTS	IN SEPUP
engineering	that must be shared	MS-PS2-2	Plan and conduct an	Stability and	Force and
practices to make	with others and is		investigation	change	Motion: 1, 6, 7,
sense of natural	determined by the				8, 9, 13*
phenomena and	sum of the forces		Connections to NOS	Connections to	
solve problems	acting on it. The			ETAS	
that require	greater the mass of				
understanding	the object, the				
interactions	greater the force				
between objects	needed to achieve				
and within	the same change in				
systems of	motion.				
objects.	4. Forces that act a	MS-PS2-3	Ask questions	Cause and effect	Fields and
	distance				Interactions: 7,
	(gravitational,		Engage in argument from	Systems and	8, 9, 12, 13*, 14
	electric, and	MS-PS2-4	evidence	system models	Fields and
	magnetic) can be				Interactions: 3,
	explained by force		Planning and carrying out		4, 7*
	fields that extend	MS-PS2-5	investigations		Fields and
	through space and				Interactions: 5,
	can be mapped by		Connections to NOS		7, 9, 10, 12*
	their effect on a test				
	object.				
3. Students can	5. Kinetic energy can	MS-PS3-1	Analyze and interpret data	Scale, proportion	Force and
use the full range	be distinguished			and quantity	Motion: 1, 2, 3,
of science and	from the various		Plan and carry out		4, 5*
engineering	forms of potential	MS-PS3-2	investigations	Energy and matter	Fields and
practices to make	energy.				Interactions: 3,
sense of natural					4, 6, 7, 10, 11*

PREPARED	COLORADO GRADE	EVIDENCE	CO ESSENTIAL SKILLS &	CROSSCUTTING	WHERE FOUND
GRADUATES	LEVEL EXPECTATION	OUTCOMES	SCI/ENGIN PRACTICES	CONCEPTS	IN SEPUP
phenomena and		MS-PS3-3	Construct explanations &		Energy: 1, 7, 8,
solve problems			design solutions		10, 11, 12, 13*
that require		MS-PS3-4			Energy: 1, 4, 6,
understanding			Engage in argument from		7, 8*
how energy is		MS-PS3-5	evidence		
transferred and					Energy: 2, 3, 4,
conserved.			Connections to NOS		5, 6*
	6. Energy changes to	MS-PS3-3	Construct explanations and	Scale, proportion	Energy: 1, 7, 8,
	and from each type		design solutions	and quantity	10, 11, 12, 13*
	can be tracked	MS-PS3-4			Energy: 1, 4, 6,
	through physical or		Plan and carry out	Energy and matter	7, 8*
	chemical	MS-PS3-5	investigations		Energy: 2, 3, 4,
	interactions. The				5, 6*
	relationship between		Engage in argument from		
	the temperature and		evidence		
	the total energy of a				
	system depends on		Connections to NOS		
	the types, states and				
	amounts of matter.				
	7. When two objects	MS-PS3-2	Develop and use models	Systems and	Fields and
	interact, each one			system models	Interactions: 3,
	exerts a force on the				4, 6, 7, 10, 11*
	other that can cause				
	energy to be				
	transferred to and				
	from the object.				

PREPARED	COLORADO GRADE	EVIDENCE	CO ESSENTIAL SKILLS &	CROSSCUTTING	WHERE FOUND
GRADUATES	LEVEL EXPECTATION	OUTCOMES	SCI/ENGIN PRACTICES	CONCEPTS	IN SEPUP
4. Students can	8. A simple wave	MS-PS4-1	Use mathematics and	Patterns	IN SEI OI
use the full range	model has a	1015 1 54 1	computational thinking	Tatterns	Waves: 1, 2, 3,
of science and	repeating pattern		computational tilliking		7*
engineering	with specific		Connections to NOS		
practices to make	wavelength,	MS-PS4-2	Connections to Wes		Waves: 3, 4, 8,
sense of natural	frequency, and				9, 10, 11, 12,
phenomena and	amplitude and				13*
solve problems	mechanical waves				
that require	need a medium				
understanding	through which they				
how waves are	are transmitted. This				
used to transfer	model can explain				
energy and	many phenomena				
information.	which include light				
	and sound.				
	9. A wave model of	MS-PS4-2	Develop and use a model	Structure and	Waves: 3, 4, 8,
	light is useful to		·	function	9, 10, 11, 12,
	explain how light				13*
	interacts with objects				
	through a variety of				
	properties.				
	10. Designed	MS-PS4-3	Obtaining, evaluating and	Structure and	Waves: 5, 6
	technologies can		communicating information	function	
	transmit digital				
	information as wave			Connections ETAS	
	pulses.				
				Connections to	
				NOS	
		STANDAF	RD 2. LIFE SCIENCE		

PREPARED	COLORADO GRADE	EVIDENCE	CO ESSENTIAL SKILLS &	CROSSCUTTING	WHERE FOUND
GRADUATES	LEVEL EXPECTATION	OUTCOMES	SCI/ENGIN PRACTICES	CONCEPTS	IN SEPUP
5. Students can	1. All living things are	MS-LS1-1	Plan and carry out	Scale, proportion	From Cells to
use the full range	made up of cells,		investigations	and quantity	Organisms: 1, 2,
of science and	which is the smallest				3, 4, 9*
engineering	unit that can be said	MS LS1-2	Develop and use a model	Structure and	From Cells to
practices to make	to be alive.		Engage in argument from	function	Organisms: 6, 7,
sense of natural		MS-LS1-3	evidence		8*
phenomena and				Systems and	From Cells to
solve problems				system models	Organisms: 10,
that require					14, 15
understanding how individual					Body Systems:
organisms are					1, 2, 3, 4, 9, 10, 11, 12*
configured and	2. Organisms	MS-LS1-4	Engage in argument from	Cause and effect	Reproduction:
how these	reproduce, either	1013-131-4	evidence	Cause and effect	10*, 11*
structures	sexually or asexually,	MS-LS1-5	evidence		Reproduction:
function to	and transfer their	1013 232 3	Construct explanations and		1, 7*
support life,	genetic information		design solutions		_, .
growth, behavior	to their offspring.				
and reproduction.	3. Sustaining life	MS-LS1-6	Construct explanations and	Energy and matter	From Cells to
	requires substantial		design solutions		Organisms: 12,
	energy and matter				13*
	inputs.	MS-LS1-7	Develop and use models		From Cells to
					Organisms: 5,
					11*
					Body Systems: 5
	4. Each sense	MS-LS1-8	Obtain, evaluate, and	Cause and effect	Body Systems:
	receptor responds to		communicate information		6, 7, 8*
	different inputs			Connections to	
	(electromagnetic,		Connections to NOS	ETAS	

PREPARED	COLORADO GRADE	EVIDENCE	CO ESSENTIAL SKILLS &	CROSSCUTTING	WHERE FOUND
GRADUATES	LEVEL EXPECTATION	OUTCOMES	SCI/ENGIN PRACTICES	CONCEPTS	IN SEPUP
	mechanical, chemical), transmitting them as signals that travel along nerve cells to the brain.			Connections to NOS	
6. Students can	5. Organisms and	MS-LS2-1	Analyze and interpret data	Cause and effect	Ecology: 5, 6, 9*
use the full range of science and engineering practices to make sense of natural phenomena and solve problems that require understanding how living systems interact with the biotic and abiotic environment.	populations of organisms are dependent on their environmental interactions both with other living things and with nonliving	MS-LS2-2	Construct explanations and design solutions	Patterns Influence of SET on society and natural world Connections to NOS	Ecology: 2, 8, 10*
	6. Ecosystems are sustained by the continuous flow of energy, originating primarily from the sun, and the recycling of matter and nutrients within the system.	MS-LS2-3	Develop and use models Connections to NOS	Energy and matter Connections to NOS Connections to ETAS	Ecology: 7, 8, 11, 12*
	7. Ecosystems are dynamic in nature;	MS-LS2-4	Engage in argument from evidence	Stability and change	Ecology: 1, 2, 3, 4, 5, 6, 13, 14*

PREPARED GRADUATES	COLORADO GRADE LEVEL EXPECTATION	EVIDENCE OUTCOMES	CO ESSENTIAL SKILLS & SCI/ENGIN PRACTICES	CROSSCUTTING CONCEPTS	WHERE FOUND IN SEPUP
	their characteristics can vary over time. Disruptions to any physical or biological component of an ecosystem	MS-LS2-5	Connections to NOS	Connections to NOS	Ecology: 2, 4, 15*
7. Students can use the full range of science and	8. Heredity explains why offspring resemble, but are not	MS-LS3-1	Develop and use models Obtain, evaluate, and	Cause and effect Structure and	Reproduction: 1, 3, 8, 12, 13* Evolution: 3, 4,
engineering	identical to, their		communicate information	function	5*
practices to make sense of natural phenomena and solve problems that require understanding how genetic and environmental factors influence variation of organisms across generations.	parents and is a unifying biological principle. Heredity refers to specific mechanisms by which characteristics or traits are passed from one generation to the next via genes.	MS-LS3-2		Interdependence of SET Connections to NOS	Reproduction: 1, 2, 3, 4, 5, 6, 8, 9*
8. Students can use the full range	9. Fossils are mineral replacements,	MS-LS4-1	Analyze and interpret data	Patterns	Evolution: 7, 8, 9, 10 11*
of science and engineering practices to make	preserved remains, or traces of organisms that lived	MS-LS4-2 MS-LS4-3	Construct explanations and design solutions	Connections to NOS	Evolution: 7, 8, 9, 10 11, 12* Evolution: 12,
sense of natural	in the past.	1110 107 0			13*

PREPARED	COLORADO GRADE	EVIDENCE	CO ESSENTIAL SKILLS &	CROSSCUTTING	WHERE FOUND
GRADUATES	LEVEL EXPECTATION	OUTCOMES	SCI/ENGIN PRACTICES	CONCEPTS	IN SEPUP
phenomena and	10. Genetic	MS-LS4-4	Construct explanations and	Cause and effect	Evolution: 1, 2,
solve problems	variations among		design solutions		3, 4*
that require	individuals in a	MS-LS4-5		Connections to	Evolution: 14,
understanding	population give some		Obtain, evaluate, and	ETAS	15, 16*
how natural	individuals an	MS-LS4-6	communicate information		
selection drives	advantage in			Connections to	Fuglution, 1, 2
biological	surviving and			NOS	Evolution: 1, 2,
evolution	reproducing in their				3, 4, 5, 6*
accounting for the	environment.				
unity and diversity	11. Adaptation by	MS-LS4-6	Using mathematics and	Cause and effect	Evolution: 1, 2,
of organisms.	natural selection		computational thinking		3, 4, 5, 6*
	acting over			Connections to	
	generations is one			NOS	
	important process by				
	which species change				
	over time in				
	response to changes				
	in environmental				
	conditions.				
	12. Biodiversity is the	MS-LS2-5	Engage in argument from	Patterns	Ecology: 2, 4,
	wide range of		evidence		15*
	existing life forms			Energy and matter	
	that have adapted to				
	the variety of			Interdependence	
	conditions on Earth,			of SET	
	from terrestrial to				
	marine ecosystems.			Connections to	
	,			NOS	
		STANDARI	O 3. EARTH SCIENCE	1	•

DDEDADED	COLORADO CRADE	E)/IDENCE	CO ECCENTIAL CIVILE 9	CDOCCCUTTING	WILEDE EOLIND
PREPARED	COLORADO GRADE	EVIDENCE	CO ESSENTIAL SKILLS &	CROSSCUTTING	WHERE FOUND
GRADUATES	LEVEL EXPECTATION	OUTCOMES	SCI/ENGIN PRACTICES	CONCEPTS	IN SEPUP
9. Students can	1. Motion is	MS-ESS1-1	Develop and use a model	Patterns	Solar System
use the full range	predictable in both				and Beyond: 2,
of science and	solar systems and			Systems and	3, 4, 5, 6, 7, 8,
engineering	galaxies.			system models	9*
practices to make		MS-ESS1-2			Solar System
sense of natural				Connections to	and Beyond: 10,
phenomena and				NOS	11, 12, 14, 15,
solve problems					16*
that require	2. The solar system	MS-ESS1-2	Develop and use a model	Patterns	Solar System
understanding the	contains many varied		·		and Beyond: 10,
universe and	objects held together		Analyze and interpret data	Scale, proportion,	11, 12, 14, 15,
Earth's place in it.	by gravity. Solar		, .	quantity	16*
	system models	MS-ESS1-3		Modeling	Solar System
	explain and predict				and Beyond: 1,
	eclipses, lunar			Connections to	10, 11, 12, 13*
	phases, and seasons.			NOS	-, , , -
10. Students can	3. Rock strata and	MS-ESS1-4	Constructing explanations	Scale, proportion,	Earth's
use the full range	the fossil record can		and design solutions	quantity	Resources: 9,
of science and	be used as evidence			4	10, 11, 12*
engineering	to organize the				-, ,
practices to make	relative occurrence				
sense of natural	of major historical				
phenomena and	events in Earth's				
solve problems	history.				
that require	4. Energy flows and	MS-ESS2-1	Develop and use models	Stability and	Geological
· ·	<u> </u>	INIO-E33Z-T	Develop and use models	·	
understanding	matter cycles within			change	Processes: 2, 5,
how and why	and among Earth's				8, 9, 10, 11, 13,
	systems, including				14, 15*

PREPARED	COLORADO GRADE	EVIDENCE	CO ESSENTIAL SKILLS &	CROSSCUTTING	WHERE FOUND
GRADUATES	LEVEL EXPECTATION	OUTCOMES	SCI/ENGIN PRACTICES	CONCEPTS	IN SEPUP
Earth is constantly changing.	the sun and Earth's interior as primary energy sources. Plate tectonics is one result of these processes.	MS-ESS2-2			Geological Processes: 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13* Land, Water, and Human Interactions: 3, 4, 6, 7, 8, 10, 11, 12, 13, 14*
	5. Plate tectonics is the unifying theory that explains movements of rocks at Earth's surface and geological history.	MS-ESS2-3	Analyze and interpret data Connections to NOS	Patterns	Geological Processes: 10, 11, 12, 13, 14*
	6. Water cycles among land, ocean, and atmosphere, and is propelled by sunlight and gravity. Density variations of sea water drive interconnected ocean currents.	MS-ESS2-2	Construct explanations and design solutions Develop and use a model NOS	Scale, proportion, quantity Energy and matter	Geological Processes: 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13* Land, Water, and Human Interactions: 3, 4, 6, 7, 8, 10, 11, 12, 13, 14*
	Water movement causes weathering and erosion,	MS-ESS2-4			Land, Water, and Human Interactions: 2, 5, 7, 8, 9*

PREPARED	COLORADO GRADE	EVIDENCE	CO ESSENTIAL SKILLS &	CROSSCUTTING	WHERE FOUND
GRADUATES	LEVEL EXPECTATION	OUTCOMES	SCI/ENGIN PRACTICES	CONCEPTS	IN SEPUP
	changing landscape features.	MS-ESS2-5			Weather and Climate: 2, 3, 7, 9, 10, 11, 12, 13*
		MS-ESS2-6			Weather and Climate: 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14*
	7. Complex interactions	MS-ESS2-5	Develop and use models	Cause and effect	Weather and Climate: 2, 3, 7,
	determine local weather patterns		Collect and analyze data	Systems and system models	9, 10, 11, 12, 13*
	and influence climate, including the role of the ocean.	MS-ESS2-6			Weather and Climate: 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14*
11. Students can use the full range of science and engineering practices to make sense of natural phenomena and solve problems that require understanding	8. Humans depend on Earth's land, ocean, atmosphere, and biosphere for different resources, many of which are limited or not renewable. Resources are distributed unevenly	MS-ESS3-1 MS-ESS3-2	Construct explanations and design solutions	Cause and effect	Geological Processes: 2, 16, 17* Earth's Resources: 1, 2, 3, 5, 7, 8, 14*
how human activities and the	around the planet as a result of past geologic processes.				

PREPARED	COLORADO GRADE	EVIDENCE	CO ESSENTIAL SKILLS &	CROSSCUTTING	WHERE FOUND
GRADUATES	LEVEL EXPECTATION	OUTCOMES	SCI/ENGIN PRACTICES	CONCEPTS	IN SEPUP
Earth's surface	9. Mapping the	MS-ESS3-2	Analyze and interpret data	Patterns	Geological
processes interact.	history of natural				Processes: 1, 3,
	hazards in a region			Influence of SET	4, 6, 7, 8,
	and understanding				11, 18*
	related geological				
	forces.				
	10. Human activities	MS-ESS3-3	Construct explanations and	Cause and effect	Land, Water,
	have altered the		design solutions		and Human
	biosphere,	MS-ESS3-4		Influence of SET	Interactions: 1,
	sometimes damaging		Engage in argument from		3, 4, 5, 6, 9, 13,
	it, although changes		evidence	NOS	14, 15, 16*
	to environments can				Earth's
	have different				Resources: 2, 4,
	impacts for different				6, 13*
	living things.				ŕ
	11. Human activities	MS-ESS3-5	Ask Questions	Stability and	Weather and
	affect global			change	Climate: 1, 10,
	warming. Decisions				14, 15, 16*
	to reduce the impact				
	of global warming				
	depend on				
	understanding				
	climate science,				
	engineering				
	capabilities, and				
	social dynamics.				