

LAB-AIDS Correlations for

NEXT GENERATION SCIENCE STANDARDS (NGSS)

HIGH SCHOOL EARTH SCIENCE

Mark Koker, Ph D, Director of Curriculum & Professional Development, LAB-AIDS Lisa Kelp and Din Seaver, Curriculum Specialists, LAB-AIDS

This document is intended to show how our curriculum products align with the Earth Science standards in the *Next Generation Science Standards*¹ document.

ABOUT OUR PROGRAMS

LAB-AIDS Core Science Programs are developed to support current knowledge on the teaching and learning of science. All materials support an inquiry-driven pedagogy, with support for literacy skill development and with assessment programs that clearly show what students know and are able to do from using the programs. All programs have extensive support for technology in the school science classroom and feature comprehensive teacher support. For more information please visit <u>www.labaids</u>.com and navigate to the program of interest.

ABOUT EDC EARTH SCIENCE

EDC Earth Science – Revised (EDC-R), Copyright 2021, is a full year, activity-driven high school earth science course developed by the Education Development Center (EDC), with support from the National Science Foundation, and is fully aligned to the *Next Generation Science Standards* (NRC and Lead States, 2013). *EDC Earth Science* is designed around the belief that students are capable of rigorous and in-depth explorations in science when given adequate support, structure, and motivation for learning.

EDC Earth Science features the following design components:

- In-depth treatment of content based on recommendations in national standards and representative state frameworks
- Developmentally appropriate lessons featuring Earth Science concepts that build on previous learning and prepare students for more advanced courses
- Using historical, newsworthy, and fictionalized stories to draw students into the earth science content, to
 motivate them to acquire the knowledge for solving problems, and to serve as a framework around which
 students build conceptual understanding
- Differentiated instructional strategies and activities that help students construct meaning from their experiences and that serve as bridges between concrete and abstract thinking
- Support for developing literacy skills and the use of formative assessment techniques
- Each chapter of EDC: Earth Science is a cluster of activities that addresses a specific set of concepts and skills. The amount of class time for each chapter will vary. A chapter may range from one to four weeks of classroom sessions. Not shown here are two project-oriented shorter chapters that open and close the course, which taken together require 2-4 weeks for completion. This provides up to 32 weeks of actual instructional time, plus an additional 4 weeks for assessment and related activities.

¹ https://www.nextgenscience.org

Unit Title	Core Science Content	Suggested Time
1 Hydrosphere:	Water cycle; surface water, groundwater, assessing and	3-4 weeks
Water in Earth's	protecting water supplies, Global patterns of ocean	
Systems	circulation; how wind and density differences drive ocean	
	currents; global conveyor belt; El Niño	
2 Atmosphere and	Climate and weather; influence of latitude,	5-8 weeks
Climate	atmospheric circulation, proximity to ocean,	
	elevation, land features, and prevailing winds on regional	
	climate, Energy balance, albedo effect, greenhouse effect,	
	carbon cycle, positive and negative feedback loops;	
	Paleoclimatology, climate proxies, climate change in Earth's	
	past, Milankovitch	
	cycles, tectonic processes that influence climate, human	
	impact on climate	
3 Earth's Place in	Life and death of stars, solar nebular condensation	3-4 weeks
the Universe	hypothesis, Kepler's Laws, Earth's interior structure and	
	composition, internal sources of heat energy, seismic waves,	
	introduction to plate tectonic	
	theory, driving forces of plate movement	
4 Plate Tectonics	Transform-fault boundaries, earthquakes, physical and	5-7 weeks
	computer models Subduction zones, volcanoes, formation of	
	igneous	
	rocks, field-measurement technologies for volcano monitoring	
	seafloor spreading, paleomagnetism, plate tectonics	
	summary,	
	landforms associated with plate boundaries	
5 The Rock Cycle	Erosion and deposition, deltaic processes, formation of	3-6 weeks
	sedimentary rock, The nature of rocks and minerals, rock	
	cycle	
6 Earth's	The geologic processes by which mineral ores are formed;	3-6 weeks
Resources	mineral extraction and processing	
	Fossil fuel formation, petroleum resources and exploration	
	technologies	

Each TE chapter provides detailed information on support for key NGSS core content, practices, and cross cutting concepts. For more information, visit us at <u>www.lab-aids.com</u>.

ABOUT THE LAB-AIDS CITATIONS

The following tables show locations in EDC Earth Science (chapter and page numbers) that support the performance assessments (PE) for ESS1, ESS2, and ESS3.

NGSS HS EARTH AND SPACE SCIENCE	Where found in EDC Earth Science				
STANDARD	Unit(s) and Title	Chapter(s) and Pages			
Earth's Place in the Universe (ESS1)					
HS-ESS1-1: Develop a model based on evidence to illustrate the life span of the sun and the role of nuclear fusion in the sun's core to release energy that eventually reaches Earth in the form of radiation.	3: Earth's Place in the Universe	8: 200-203, 212-215			
HS-ESS1-2: Construct an explanation of the Big Bang theory based on astronomical evidence of light spectra, motion of distant galaxies, and composition of matter in the universe.	3: Earth's Place in the Universe	8: 200-206			
HS-ESS1-3: Communicate scientific ideas about the way stars, over their life cycle, produce elements.	3: Earth's Place in the Universe	8: 200-201			
HS-ESS1-4: Use mathematical or computational representations to predict the motion of orbiting objects in the solar system.	3: Earth's Place in the Universe	8: 208-209			
HS-ESS1-5: Evaluate evidence of the past and current movements of continental and oceanic crust and the theory of plate tectonics to explain the ages of crustal rocks.	4: Plate Tectonics 5: The Rock Cycle	10: 256-260 12: 342-347 14: 399-401, 415-426			
HS-ESS1-6: Apply scientific reasoning and evidence from ancient Earth materials, meteorites, and other planetary surfaces to construct an account of.	3: Earth's Place in the Universe 5: The Rock Cycle	9: 195-199, 203-206 14: 415-426			
Earth's Systems (ESS2)					
HS-ESS2-1: Develop a model to illustrate how Earth's internal and surface processes operate at different spatial and temporal scales to form continental and ocean-floor features.	3: Earth's Place in the Universe4: Plate Tectonics5: The Rock Cycle	9: 241-244 10: 250-279 11: 289-322 12: 336-345, 350-352 13: 363-389 14: 415-426			
HS-ESS2-2: Analyze geoscience data to make the claim that one change to Earth's surface can create feedbacks that cause changes to other Earth systems.	1: Hydrosphere: Water in Earth's Systems 2: Atmosphere and Climate	3: 66-70, 72-76 4: 102-106 5: 115-135 6: 155-164			
HS-ESS2-3: Develop a model based on evidence of Earth's interior to describe the cycling of matter by thermal convection.	3: Earth's Place in the Universe 4: Plate Tectonics	9: 241-244 11: 317-319 12: 342-352			

NGSS HS EARTH AND SPACE SCIENCE	Where found in EDC Earth Science				
STANDARD	Unit(s) and Title	Chapter(s) and Pages			
HS-ESS2-4: Use a model to describe how variations in the flow of energy into and out of Earth's systems result in changes in climate.	1: Hydrosphere: Water in Earth's Systems 2: Atmosphere and Climate	3: 66-76 4: 94-98 5: 115-123 6: 165-178			
HS-ESS2-5: Plan and conduct an investigation of the properties of water and its effects on Earth materials and surface processes.	1: Hydrosphere: Water in Earth's Systems 2: Atmosphere and Climate	2:24-35 3: 58-76 4: 99-103 5: 116-124, 133-135 6: 165-175			
HS-ESS2-6: Develop a quantitative model to describe the cycling of carbon among the hydrosphere, atmosphere,	2: Atmosphere and Climate	5: 124-135 6: 160-163			
HS-ESS2-7: Construct an argument based on evidence about the coevolution of Earth's systems and life on Earth. (Changes in the atmosphere from plants and other organisms along with feedback mechanisms.)	 Hydrosphere: Water in Earth's Systems Atmosphere and Climate The Rock Cycle Earth Resources 	2: 36-40 5: 127-135 6: 165-178 13: 387-389 14: 425-426 15: 447-453 16: 479-485			
HS-ESS2-8: Evaluate data and communicate information to explain how the movement and interactions of air masses result in changes in weather conditions.	2: Atmosphere and Climate	4: 97-98, 102-103, 104-106			
Earth and Human Activity (ESS3)					
HS-ESS3-1: Construct an explanation based on evidence for how the availability of natural resources, occurrence of natural hazards, and changes in climate have influenced human activity.	 1: Hydrosphere: Water in Earth's Systems 4: Plate Tectonics 5: The Rock Cycle 6: Earth Resources 	2: 18-20, 38-40 10: 250-253, 283-284 11: 290-292, 321-322 13: 358-361, 387-389 15: 432-435, 444-456 16: 461-468, 479-485			
HS-ESS3-2: Evaluate competing design solutions for developing, managing, and utilizing energy and mineral resources based on cost benefit ratios.	6: Earth Resources	16: 482-484			
HS-ESS3-3: Create a computational simulation to illustrate the relationships among management of natural resources, the sustainability of human populations, and biodiversity.	 1: Hydrosphere: Water in Earth's Systems 2: Atmosphere and Climate 6: Earth Resources 	2:18-23 5: 127-132 6: 165-178 16: 463-467			
HS-ESS3-4: Evaluate or refine a technological solution that reduces impacts of human activities on natural systems.	1: Hydrosphere: Water in Earth's Systems 5: The Rock Cycle 6: Earth Resources	2: 38-40 13: 387-389 16: 479-481			
HS-ESS3-5: Analyze geoscience data and the	2: Atmosphere and Climate	6: 165-178			

NGSS HS EARTH AND SPACE SCIENCE	Where found in EDC Earth Science	
STANDARD	Unit(s) and Title	Chapter(s) and Pages
results from global climate models to make an evidence-based forecast of the current rate of global or regional climate change and associated future impacts to Earth systems.		
HS-ESS3-6: Use a computational representation to illustrate the relationships among Earth systems and how those relationships are being modified due to human activity.	2: Atmosphere and Climate	5: 127-135 6: 165-175