

## Lab-Aids Correlations for Idaho Content Standards for Science Chemistry

Din Seaver, Curriculum Development and Product Manager, Lab-Aids Lisa Kelp, Vice President of Learning and Development, Lab-Aids

This document is intended to show how A Natural Approach to Chemistry, 3<sup>rd</sup> edition materials align with the Idaho Content Standards for Science for Chemistry.

### ABOUT OUR PROGRAMS

Lab-Aids has based its home offices and operations in Ronkonkoma, NY, since 1963. We publish over 200 kits and core curriculum programs to support science teaching and learning, grades 6-12. All core curricula support an inquiry-driven pedagogy, with support for literacy skill development and with assessment programs that clearly show what students know and are able to do as a result of program use. All programs have extensive support for technology and feature comprehensive teacher support. For more information, please visit<u>www.lab-aids.com</u> and navigate to the program of interest.

### ABOUT A NATURAL APPROACH TO CHEMISTRY

A Natural Approach to Chemistry (NAC), written by Manos Chaniotakis, PhD, is published by, and available exclusively from, Lab-Aids, Inc., Ronkonkoma NY. Fully integrated instructional materials include a Student Book (SB), Lab Investigations Manual (LIM), Teacher Edition (TE), and a variety of materials packages.

Chapters 1-4 present a comprehensive overview of the "big picture," main ideas in chemistry, such as the atomic nature of matter, systems, temperature, and energy. Chapters 5-14 provide in-depth coverage of the big ideas laid out in the first four chapters. The treatment includes strong conceptual development as well as algebra-based quantitative problem solving. All academic content and instruction standards for chemistry have been met by the end of Chapter 14. Chapters 15-21 dive deeper into significant areas of interest in chemistry related to the natural world and applications of chemistry to our daily lives.

#### ABOUT THE LAB-AIDS CITATIONS

| Citations included in the correlation document are as follows: |          |  |
|----------------------------------------------------------------|----------|--|
| Student Book: Chapter, Section                                 | 6.2, 6.3 |  |
| Lab Investigations Manual (LIM): Investigation #               | 7A, 7B   |  |

This correlation is intended to show selected locations in *A Natural Approach to Chemistry, 3<sup>rd</sup> edition* student materials that support the Idaho Content Standards for Science for Chemistry. It is not an exhaustive list; other locations may exist that are not listed here.

# Lab-aids

| Idaho Content Standard                                                                                                                                                                                                                                                                                         | A Natural Approach to<br>Chemistry<br>Student Book Section  | A Natural Approach<br>to Chemistry<br>Lab Investigation # |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------|--|
| HS-PSC-1 – Structure and Properties of Matter                                                                                                                                                                                                                                                                  |                                                             |                                                           |  |
| HS-PSC-1.1 Students who demonstrate understanding can:<br>Develop models to describe the atomic composition of<br>simple molecules and extended structures.                                                                                                                                                    | 2.2, 4.1, 4.2, 4.3, 7.1,<br>7.2, 7.3, 8.1, 8.2, 8.3,<br>8.4 | 2B, 4C, 6C, 7A, 7B, E7,<br>8A, 8B                         |  |
| HS-PSC-1.2 Students who demonstrate understanding can:<br>Use the periodic table as a model to predict the relative<br>properties of elements based on the patterns of<br>electrons in the outermost energy level of atoms.                                                                                    | 2.1, 5.1, 6.1, 6.2, 7.1,<br>7.2, 7.3                        | 6B, 6C, 7A                                                |  |
| HS-PSC-1.3 Students who demonstrate understanding can:<br>Plan and conduct an investigation to gather evidence to<br>compare the structure of substances at the bulk scale to<br>infer the strength of electrostatic forces between<br>particles.                                                              | 2.2, 8.1, 8.2, 8.3, 9.1,<br>16.4                            | 3B                                                        |  |
| HS-PSC-1.4 Students who demonstrate understanding can:<br>Develop models to illustrate the changes in the<br>composition of the nucleus of the atom and the energy<br>released during the processes of fission, fusion, and the<br>various modes of radioactive decay.                                         | 20.1, 20.2, 20.3, 20.4                                      | 20B                                                       |  |
| HS-PSC-2 – Chemical Reactions                                                                                                                                                                                                                                                                                  |                                                             |                                                           |  |
| HS-PSC-2.1 Students who demonstrate understanding can:<br>Construct and revise an explanation for the outcome of a<br>simple chemical reaction based on the outermost<br>electron states of atoms, trends in the periodic table, and<br>knowledge of the patterns of chemical properties.                      | 4.1, 6.1, 6.2, 7.2, 7.3                                     | 4C, 7A                                                    |  |
| HS-PSC-2.2 Students who demonstrate understanding can:<br>Develop a model to illustrate that the energy transferred<br>during an exothermic or endothermic chemical reaction<br>is based on the bond energy difference between bonds<br>broken (absorption of energy) and bonds formed (release<br>of energy). | 4.1, 12.1, 12.3                                             | 4C, 10C                                                   |  |
| HS-PSC-2.3 Students who demonstrate understanding can:<br>Apply scientific principles and evidence to provide an<br>explanation about the effects of changing the<br>temperature or concentration of the reacting particles on<br>the rate at which a reaction occurs.                                         | 12.2                                                        | 12A, 12B, 12C                                             |  |
| <u>HS-PSC-2.4</u> Students who demonstrate understanding can:<br>Use mathematical representations to support the claim<br>that the number and type of atoms, and therefore mass,<br>are conserved during a chemical reaction.                                                                                  | 4.2, 10.1, 10.2, 10.3,<br>11.1, 11.2, 11.3, 11.4,<br>12.2   | 4A, 10A                                                   |  |

# Lab-aids

| Idaho Content Standard                                                                                                                                                                                                                                                                                                                                               | A Natural Approach to<br>Chemistry | A Natural Approach<br>to Chemistry   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|--------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                      | Student Book Section               | Lab Investigation #                  |
| HS-PSC-3 – Energy                                                                                                                                                                                                                                                                                                                                                    |                                    |                                      |
| HS-PSC-3.1 Students who demonstrate understanding can:<br>Ask questions to clarify the idea that electromagnetic<br>radiation can be described either by a wave model or a<br>particle model.                                                                                                                                                                        | 5.2, 5.4                           |                                      |
| <b>HS-PSC-3.2</b> Students who demonstrate understanding can:<br>Create a computational model to calculate the change in<br>the energy of one component in a system when the<br>change in energy of the other component(s) and energy<br>flows in and out of the system are known.                                                                                   | 3.2, 10.4                          | 3A, 3B, 9C, 10C                      |
| HS-PSC-3.3 Students who demonstrate understanding can:<br>Develop and use models to illustrate that energy at the<br>macroscopic scale can be accounted for as a combination<br>of energy associated with the motions of particles<br>(objects) and energy associated with the relative<br>positions of particles (objects).                                         | 1.3, 3.1, 9.3                      | 3A, 3B, 3D, 4A, 9C,<br>10C, 15A, 15B |
| HS-PSC-3.4* Students who demonstrate understanding<br>can:<br>Design, build, and refine a device that works within given<br>constraints to convert one form of energy into another<br>form of energyOPTIONAL                                                                                                                                                         | 9.3, 15.1, 15.4                    | 15A, 15B, 15C                        |
| HS-PSC-3.5 Students who demonstrate understanding can:<br>Plan and conduct an investigation to provide evidence<br>that the transfer of thermal energy when two<br>components of different temperature are combined<br>within a closed system results in a more uniform energy<br>distribution among the components in the system<br>(second law of thermodynamics). | 3.2, 3.3, 3.4, 19.1                | 3A, 3B                               |